No CrossRef data available.
Article contents
Differential Forms and Smoothness of Quotients by Reductive Groups
Published online by Cambridge University Press: 04 December 2007
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let π : X [xlarr ] Y be a good quotient of a smooth variety X by a reductive algebraic group G and 1[les ]k≤ dim (Y) an integer. We prove that if, locally, any invariant horizontal differential k-form on X (resp. any regular differential k-form on Y) is a Kähler differential form on Y then codim(Ysing)>k+1. We also prove that the dualizing sheaf on Y is the sheaf of invariant horizontal dim(Y)-forms.
- Type
- Research Article
- Information
- Copyright
- © 2002 Kluwer Academic Publishers
You have
Access