Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T00:59:53.778Z Has data issue: false hasContentIssue false

Commensurability of automorphism groups

Published online by Cambridge University Press:  06 February 2017

Alex Bartel
Affiliation:
Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK
Hendrik W. Lenstra Jr.
Affiliation:
Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, The Netherlands

Abstract

We develop a theory of commensurability of groups, of rings, and of modules. It allows us, in certain cases, to compare sizes of automorphism groups of modules, even when those are infinite. This work is motivated by the Cohen–Lenstra heuristics on class groups.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artin, E., Geometric algebra (Interscience Publishers, New York, 1957).Google Scholar
Bourbaki, N., Modules et anneaux semi-simples, Appendice 2 , inÉléments de mathématique, Algèbre, Chapitre 8 (Springer, Berlin, 2012).Google Scholar
Cohen, I. S., Commutative rings with restricted minimum condition , Duke Math. J. 17 (1950), 2742.CrossRefGoogle Scholar
Cohen, H. and Lenstra, H. W. Jr., Heuristics on class groups of number fields , in Number theory, Noordwijkerhout 1983, Lecture Notes in Mathematics, vol. 1068 (Springer, Berlin, 1984), 3362.Google Scholar
Cohen, H. and Martinet, J., Étude heuristique des groupes de classes des corps de nombres , J. Reine Angew. Math. 404 (1990), 3976.Google Scholar
Curtis, C. W. and Reiner, I., Methods of representation theory with applications to finite groups and orders, Vol. 1 (John Wiley & Sons, New York, 1981).Google Scholar
Gabriel, P. and Zisman, M., Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 35 (Springer, New York, 1967).Google Scholar
Lam, T. Y., A first course in noncommutative rings, Graduate Text in Mathematics, vol. 131 (Springer, New York, 2001).CrossRefGoogle Scholar
Lang, S., Algebra, Graduate Text in Mathematics, vol. 211 (Springer, New York, 2002).Google Scholar
Lenstra, H. W., A normal basis theorem for infinite Galois extensions , Indag. Math. 88 (1985), 221228.CrossRefGoogle Scholar
Lewin, J., Subrings of finite index in finitely generated rings , J. Algebra 5 (1967), 8488.Google Scholar
The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu (2016).Google Scholar
Wedderburn, J. H. M., On division algebras , Trans. Amer. Math. Soc. 22 (1921), 129135.CrossRefGoogle Scholar