Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T00:48:09.560Z Has data issue: false hasContentIssue false

Lattice Boltzmann Schemes with Relative Velocities

Published online by Cambridge University Press:  30 April 2015

François Dubois
Affiliation:
CNAM Paris, Laboratoire de mécanique des structures et des systèmes couplés, France Univ. Paris-Sud, Laboratoire de mathématiques, UMR 8628, Orsay, F-91405, CNRS, Orsay, F-91405, France
Tony Fevrier*
Affiliation:
Univ. Paris-Sud, Laboratoire de mathématiques, UMR 8628, Orsay, F-91405, CNRS, Orsay, F-91405, France
Benjamin Graille
Affiliation:
Univ. Paris-Sud, Laboratoire de mathématiques, UMR 8628, Orsay, F-91405, CNRS, Orsay, F-91405, France
*
*Corresponding author. Email addresses: [email protected] (F. Dubois), [email protected] (T. Fevrier), [email protected] (B. Graille)
Get access

Abstract

In this contribution, a new class of lattice Boltzmann schemes is introduced and studied. These schemes are presented in a framework that generalizes the multiple relaxation times method of d’Humières. They extend also the Geier’s cascaded method. The relaxation phase takes place in a moving frame involving a set of moments depending on a given relative velocity field. We establish with the Taylor expansion method that the equivalent partial differential equations are identical to the ones obtained with the multiple relaxation times method up to the second order accuracy. The method is then performed to derive the equivalent equations up to third order accuracy.

Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Asinari, P.. Generalized local equilibrium in the Cascaded Lattice Boltzmann method. Phys. Rev, 519, 2008.CrossRefGoogle Scholar
[2]Benzi, R., Succi, S., and Vergassola, M.. The Lattice Boltzmann equation: theory and applications. Physics Reports, 222(3):145197, 1992.CrossRefGoogle Scholar
[3]Chen, S. and Doolen, G. D.. Lattice Boltzmann Method for fluid flows. Annu. Rev. Fluid Mech., 30, 329364, 1998.Google Scholar
[4]Dellar, P. J.. Lattice kinetic schemes for magnetohydrodynamics. J. Comput. Phys., 179(1):95126, 2002.Google Scholar
[5]d’Humières, D.. Generalized Lattice-Boltzmann equations. In Rarefied Gas Dynamics: Theory and simulation, volume 159, pages 450458. AIAA Progress in astronomics and aeronautics, 1994.Google Scholar
[6]d’Humières, D., Qian, Y. H., and Lallemand, P.. Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters), 17(6):479, 1992.Google Scholar
[7]Dubois, F.. Equivalent partial differential equations of a lattice Boltzmann scheme. Computers and Mathematics with Applications, 55:14411449, 2008.Google Scholar
[8]Dubois, F.. Third order equivalent equation of Lattice Boltzmann scheme. Discrete Contin. Dyn. Syst., 23(1–2):221248, 2009.CrossRefGoogle Scholar
[9]Frisch, U., Hasslacher, B., and Pommeau, Y.. Lattice gas Automata for the Navier-Stokes equation. Phys. Rev. Lett., 56, 1992.Google Scholar
[10]Geier, M.. Ab initio derivation of the cascaded Lattice Boltzmann Automaton. PhD thesis, Univ. Freiburg, 2006.Google Scholar
[11]Geier, M., Greiner, A., and Korvink, J. C.. Cascaded digital Lattice Boltzmann automata for high Reynolds number flow. Phys. Rev. E, 73, 066705, 2006.Google Scholar
[12]Jami, M., Amraqui, S., Mezrhab, A., and Abid, C.. Numerical study of natural convection in a cavity of high aspect ratio by using the Lattice Boltzmann method. Internat. J. Numer. Methods Engrg., 73(12):17271738, 2008.Google Scholar
[13]Junk, M., Klar, A., and Luo, L.-S.. Asymptotic analysis of the lattice Boltzmann equation. J. Comput. Phys., 210:676704, 2005.Google Scholar
[14]Lallemand, P. and Dubois, F.. Some results on energy-conserving lattice Boltzmann models. Computers and Mathematics with Applications, 65(6):831844, 2012.Google Scholar
[15]Lallemand, P. and Luo, L.-S.. Theory of the Lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance and stability. Phys. Rev., 61:6546, 2000.Google Scholar
[16]Luo, L.-S., Liao, W., Chen, X., Peng, Y., and Zhang, W.. Numerics of the lattice boltzmann method: Effects of collision models numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E, 83(056710), 2011.Google Scholar
[17]Marié, S., Ricot, D., and Sagaut, P.. Comparison between Lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics. J. Comput. Phys., 228(4):10561070, 2009.Google Scholar
[18]Premnath, K. N. and Banerjee, S.. Incorporating forcing terms in cascaded Lattice Boltzmann approach by method of central moments. Phys. Rev. E, 80, 036702, 2009.Google Scholar
[19]Skordos, P. A.. Initial and Boundary Conditions for the Lattice Boltzmann Method. Phys. Rev. E, 48(6):48234842, 1993.Google Scholar
[20]Wolfram, S.. Cellular automaton fluids 1: Basic theory. J. Stat. Phys, 45:471, 1986.Google Scholar
[21]Yeomans, J. M. and Wagner, A. J.. Lattice Boltzmann simulations of complex fluids. IMA J. Math. Appl. Bus. Indust., 11(4):257267, 2000.Google Scholar
[22]Zhong, L., Feng, S., Dong, P., and Gao, S.. Lattice Boltzmann schemes for the non linear Schrödinger equation. Phys. Rev. E, 74(036704), 2006.Google Scholar