Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T15:32:32.679Z Has data issue: false hasContentIssue false

Adapted Nested Force-Gradient Integrators: The Schwinger Model Case

Published online by Cambridge University Press:  08 March 2017

Dmitry Shcherbakov*
Affiliation:
Lehrstuhl für Angewandte Mathematik und Numerische Analysis, Bergische Universität Wuppertal, Gaußstrasse 20, 42119 Wuppertal, Germany
Matthias Ehrhardt*
Affiliation:
Lehrstuhl für Angewandte Mathematik und Numerische Analysis, Bergische Universität Wuppertal, Gaußstrasse 20, 42119 Wuppertal, Germany
Jacob Finkenrath*
Affiliation:
CaSToRC, CyI, 20 Constantinou Kavafi Street, 2121 Nicosia, Cyprus
Michael Günther*
Affiliation:
Lehrstuhl für Angewandte Mathematik und Numerische Analysis, Bergische Universität Wuppertal, Gaußstrasse 20, 42119 Wuppertal, Germany
Francesco Knechtli*
Affiliation:
Theoretische Physik, Bergische Universität Wuppertal, Gaußstrasse 20, 42119 Wuppertal, Germany
Michael Peardon*
Affiliation:
School of Mathematics, Trinity CollegeDublin 2, Ireland
*
*Corresponding author. Email addresses:[email protected] (D. Shcherbakov), [email protected] (M. Ehrhardt), [email protected] (J. Finkenrath), [email protected] (M. Günther), [email protected] (F. Knechtli), [email protected] (M. Peardon)
*Corresponding author. Email addresses:[email protected] (D. Shcherbakov), [email protected] (M. Ehrhardt), [email protected] (J. Finkenrath), [email protected] (M. Günther), [email protected] (F. Knechtli), [email protected] (M. Peardon)
*Corresponding author. Email addresses:[email protected] (D. Shcherbakov), [email protected] (M. Ehrhardt), [email protected] (J. Finkenrath), [email protected] (M. Günther), [email protected] (F. Knechtli), [email protected] (M. Peardon)
*Corresponding author. Email addresses:[email protected] (D. Shcherbakov), [email protected] (M. Ehrhardt), [email protected] (J. Finkenrath), [email protected] (M. Günther), [email protected] (F. Knechtli), [email protected] (M. Peardon)
*Corresponding author. Email addresses:[email protected] (D. Shcherbakov), [email protected] (M. Ehrhardt), [email protected] (J. Finkenrath), [email protected] (M. Günther), [email protected] (F. Knechtli), [email protected] (M. Peardon)
*Corresponding author. Email addresses:[email protected] (D. Shcherbakov), [email protected] (M. Ehrhardt), [email protected] (J. Finkenrath), [email protected] (M. Günther), [email protected] (F. Knechtli), [email protected] (M. Peardon)
Get access

Abstract

We study a novel class of numerical integrators, the adapted nested force-gradient schemes, used within the molecular dynamics step of the Hybrid Monte Carlo (HMC) algorithm. We test these methods in the Schwinger model on the lattice, a well known benchmark problem. We derive the analytical basis of nested force-gradient type methods and demonstrate the advantage of the proposed approach, namely reduced computational costs compared with other numerical integration schemes in HMC.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bazavov, A. et al., Chiral transition and U(1) A symmetry restoration from lattice QCD using domain wall fermions, Phys. Rev. D 86 (201), 094503.Google Scholar
[2] Borici, E., Joó, C., Frommer, A., Numerical methods in QCD, Springer, Berlin, 2002.Google Scholar
[3] Clark, M.A., Joó, B., Kennedy, A.D., Silva, P.J., Better HMC integrators for dynamical simulations, PoS 323(2010).Google Scholar
[4] Christian, N., Jansen, K., Nagai, K., Pollakowski, B., Scaling test of fermion actions in the Schwinger model, Nuclear Physics B 739 (2006), pp. 6084.Google Scholar
[5] Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D., Hybrid Monte Carlo, Phys. Lett. B195 (1987), pp. 216222.Google Scholar
[6] Hairer, E., Lubich, C., Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin, 2002.Google Scholar
[7] Kennedy, A.D., Clark, M.A., Speeding up HMC with better integrators, PoS 038(2007).Google Scholar
[8] Kennedy, A. D., Clark, M. A., Silva, P. J., Force Gradient Integrators, PoS 021(2009).Google Scholar
[9] Kennedy, A.D., Silva, P.J., Clark, M.A., Shadow Hamiltonians, Poisson Brackets and Gauge Theories, Phys. Rev. D 87 (2013), 034511.Google Scholar
[10] Lüscher, M., Schäfer, S., Lattice QCD with open boundary conditions and twisted-mass reweighting, Comput. Phys. Commun. 184(2013), pp 519528.Google Scholar
[11] Omelyan, I.P., Mryglod, I.M., Folk, R., Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics, Comput. Phys. Commun. 151 (2003), pp. 272314.Google Scholar
[12] Schwinger, J.S., Gauge Invariance and Mass. 2, Phys. Rev. 128 (1962), pp. 24252429.Google Scholar
[13] Sexton, J.C., Weingarten, D.H., Hamiltonian evolution for the hybrid Monte Carlo algorithm, Nucl. Phys. B380 (1992), pp. 665678.Google Scholar
[14] Shcherbakov, D., Ehrhardt, M., Multistep Methods for Lattice QCD Simulations, PoS (Lattice 2011), pp. 327333.Google Scholar
[15] Shcherbakov, D., Ehrhardt, M., Günther, M., Peardon, M., Force-gradient nested multirate methods for Hamiltonian systems, Comput. Phys. Commun. 187(2015), pp 9197.Google Scholar
[16] Silva, P.J., Kennedy, A.D., Clark, M.A., Tuning HMC using Poisson brackets, PoS 041(2008).Google Scholar
[17] Yin, H., Mawhinney, R. D., Improving DWF Simulations: the Force Gradient Integrator and the Möbius Accelerated DWF Solver, PoS (Lattice 2011) 051.Google Scholar