Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T00:24:37.788Z Has data issue: false hasContentIssue false

Parametrization of Mean Radiative Properties of Optically Thin Steady-State Plasmas and Applications

Published online by Cambridge University Press:  03 June 2015

R. Rodriguez*
Affiliation:
Departmento de Fisica, Universidad de Las Palmas de Gran Canaria, 35017, Spain Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006, Madrid, Spain
G. Espinosa
Affiliation:
Departmento de Fisica, Universidad de Las Palmas de Gran Canaria, 35017, Spain
J. M. Gil
Affiliation:
Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006, Madrid, Spain
J. G. Rubiano
Affiliation:
Departmento de Fisica, Universidad de Las Palmas de Gran Canaria, 35017, Spain Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006, Madrid, Spain
M. A. Mendoza
Affiliation:
Departmento de Fisica, Universidad de Las Palmas de Gran Canaria, 35017, Spain Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006, Madrid, Spain
P. Martel
Affiliation:
Departmento de Fisica, Universidad de Las Palmas de Gran Canaria, 35017, Spain Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006, Madrid, Spain
E. Minguez
Affiliation:
Departmento de Fisica, Universidad de Las Palmas de Gran Canaria, 35017, Spain Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006, Madrid, Spain
*
*Corresponding author.Email:[email protected]
Get access

Abstract

Plasma radiative properties play a pivotal role both in nuclear fusion and astrophysics. They are essential to analyze and explain experiments or observations and also in radiative-hydrodynamics simulations. Their computation requires the generation of large atomic databases and the calculation, by solving a set of rate equations, of a huge number of atomic level populations in wide ranges of plasma conditions. These facts make that, for example, radiative-hydrodynamics in-line simulations be almost infeasible. This has lead to develop analytical expressions based on the parametrization of radiative properties. However, most of them are accurate only for coronal or local thermodynamic equilibrium. In this work we present a code for the parametrization of plasma radiative properties of mono-component plasmas, in terms of plasma density and temperature, such as radiative power loss, the Planck and Rosseland mean opacities and the average ionization, which is valid for steady-state optically thin plasmas in wide ranges of plasma densities and temperatures. Furthermore, we also present some applications of this parametrization such as the analysis of the optical depth and radiative character of plasmas, the use to perform diagnostics of the electron temperature, the determination of mean radiative properties for multicomponent plasmas and the analysis of radiative cooling instabilities in some kind of experiments on high-energy density laboratory astrophysics. Finally, to ease the use of the code for the parametrization, this one has been integrated in a user interface and brief comments about it are presented.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Pinna, T. and Cadwallader, L.C., Component failure rate data base for fusion applications, Fusion Eng. Des., 5152 (2000), 579-585.Google Scholar
[2]Bar-Shalom, A., Oreg, J. and Klapisch, M., Recent developments in the SCROLL model, J. Quant. Spectrosc. Radiat. Transfer, 65 (2000), 4355.Google Scholar
[3]Peyrusse, O., A superconfiguration model for broadband spectroscopy of non-LTE plasmas, J. Phys. B: At. Mol. Opt. Phys., 33 (2000), 43034321.Google Scholar
[4]Bar-Shalom, A., Klapisch, M. and Oreg, J., HULLAC, an integrated computer package for atomic processes in plasmas, J. Quant. Spectrosc. Radiat. Transfer, 77 (2001), 169188.Google Scholar
[5]Ralchenko, Yu. V. and Maron, Y., Accelerated recombination due to resonant deexcitation of metastable states, J. Quant. Spectrosc. Radiat. Transfer, 71 (2001), 609621.Google Scholar
[6]Faussurier, G., Blancard, C. and Berthier, E., Nonlocal thermodynamic equilibrium self-consistent average-atom for plasma physics, Phys. Rev. E, 63 (2001), 026401.Google Scholar
[7]Hansen, S.B., Development and application of L-shell spectroscopic modeling for plasma diagnostics, Ph.D. Thesis, University of Nevada, (2003).Google Scholar
[8]Bauche, J., Bauche-Arnoult, C. and Fournier, K.B., Model for computing superconfiguration temperatures in non-local-thermodynamic-equilibrium hot plasmas, Phys. Rev. E, 69 (2004), 026403.Google Scholar
[9]Chung, H. K., Chen, M. H., Morgan, W. L., Ralchenko, Y. and Lee, R. W., FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements, High Energy Density Phys., 1 (2005), 312.CrossRefGoogle Scholar
[10]Fontes, C.J., Colgan, J., Zhang, H.L. and Abdallah, J. Jr., Large-scale kinetics modeling of non-LTE plasmas, J. Quant. Spectrosc. Radiat. Transfer, 99 (2006), 175185.Google Scholar
[11]Pang, J. Q., Wu, Z. Q. and Yan, J., Emissivity calculations under DCA-UTA approximation for NLTE plasmas, Commun, Comput. Phys., 2 (2007), 10851094.Google Scholar
[12]Gao, C., Zeng, J., Li, Y., Jin, F. and Yuan, J., Versatile code DLAYZ for investigating population kinetics and radiative properties of plasmas in non-local thermodynamic equilibrium, High Energy Density Phys., 9 (2013), 583593.Google Scholar
[13]Frank, Y., Louzon, E., Mandelbaum, P. and Henis, Z.SEMILLAC: A new hybrid atomic model of hot dense plasmas, High Energy Density Phys., 9 (2013), 594600.Google Scholar
[14]Bates, D. R., Kingston, A. E. and McWirther, R.W. P., Recombination between electrons and atomic ions. I. Optically thin plasmas, Proc. R. Soc. London, Ser. A, 267 (1962),297312.Google Scholar
[15] R. McWhirther, W. P., Data needs, priorities and accuracies for plasma spectroscopy, Phys. Rep., 37 (1978), 165209.CrossRefGoogle Scholar
[16]Post, D.E., Jensen, R.V., Tarter, C.B., Grasberger, W.H., and Lokke, W.A., Steady-state radiative cooling rates for low density, high-temperature plasmas, Atom. Data Nucl. Data, 20 (1977), 397439.Google Scholar
[17]Summers, H.P. and McWhirter, R.W.P., Radiativ epower loss from laboratory and astrophysical plasmas. I. Power loss from plasmas in steady-state ionisation balance, J. Phys. B: Atom. Mol. Phys., 12 (1979) 387411.Google Scholar
[18]Fournier, K.B., Pacella, D., May, M.J., Finkenthal, M. and Golstein, W.H., Calculation of the radiative cooling coefficient for molybdenum in a low density plasma, Nucl. Fusion, 37 (1997), 825834.Google Scholar
[19]Fournier, K.B., Cohen, M., May, M.J. and Goldstein, W.H., Ionization state distribution and radiative cooling rate for argon in a low density plasma, Atom. Data Nucl. Data, 70 (1998), 231254.Google Scholar
[20]Fournier, K.B., May, M.J., Pacella, D., Finkenthel, M., Gregory, B.C. and Goldstein, W.H., Calculation of the radiative cooling coefficient for krypton in a low density plasma, Nucl. Fusion, 40 (2000), 847863.Google Scholar
[21]Schure, K.M., Kosenko, D., Kaastra, J.S., Keppens, R. and Vink, J., A new radiative cooling curve based on an up-to-date plasma emission code, Astron. Astrophys. 508 (2009), 751U240.Google Scholar
[22]Minguez, E., Ruiz, R., Martel, P., Gil, J.M., Rubiano, J.G., Rodriguez, R., Scaling law of radiative opacities for ICF elements, Nucl. Instrum Meth A, 464 (2001), 218224.Google Scholar
[23]Minguez, E., Martel, P., Gil, J.M., Rubiano, J.G., Rodriguez, R., Analytical opacity formulas for ICF elements, Fusion Eng. Des., 60 (2002), 1725.CrossRefGoogle Scholar
[24]Gu, M.F.The flexible atomic code, Can. J. Phys., 86 (2008), 675689.Google Scholar
[25]Bauche, J., Bauche-Arnoult, C., Klapisch, M., Transition arrays in the spectra of ionized atoms, Adv. At. Mol. Phys., 23 (1987), 131195.Google Scholar
[26]Stewart, J.C., Pyatt, K.D.Lowering of ionization potentials in plasmas, Astrophys. J., 144 (1966), 12031211.CrossRefGoogle Scholar
[27]More, R. M., Atomic physics in inertial confinement fusion, Technical Report UCRL-84991, Lawrence Livermore National Laboratory, 1981.Google Scholar
[28]Florido, R., Rodriguez, R., Gil, J. M., Rubiano, J. G., Martel, P., Minguez, E. and Mancini, R. C., Modeling of population kinetics of plasmas that are not in local thermodynamic equilibrium, using a versatile collisional-radiative model based on analytical rates, Phys. Rev. E, 80 (2009), 056402.CrossRefGoogle Scholar
[29]Lotz, W., Electron-impact ionization cross sections and ionization coefficients for atoms and ions from hydrogen to calcium, Z. Phys. 216 (1968), 241247.Google Scholar
[30]Van Regemorter, H. V., Rate of collisional excitation in stellar atmospheres, Astrophys. J. 136 (1962), 906915.Google Scholar
[31]Kramers, H. A., On the theory of X-ray absorption and of the continuous X-ray spectrum, Philos. Mag. 46 (1923), 836871.Google Scholar
[32]Griem, H. R., Principles of plasma spectroscopy, Cambridge University Press, 1997.CrossRefGoogle Scholar
[33]Rodriguez, R., Gil, J.M., Florido, R., Rubiano, J.G., Martel, P., Minguez, E., Code to calculate optical properties for plasmas in a wide range of densities, J. Phys. IV, 133 (2006), 981984.Google Scholar
[34]Rodriguez, R., Florido, R., Gil, J.M., Rubiano, J.G., Martel, P., Minguez, E., RAPCAL code: a computational package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature, Laser Part. Beams, 26 (2008), 433448.Google Scholar
[35]Rodriguez, R., Florido, R., Gil, J.M., Rubiano, J.G., Suarez, D., Martel, P., Minguez, E., Mancini RC, R.C., Collisional-Radiative calculations of optically thin and thick plasmas using the computational package ABAKO/RAPCAL. Commun. Comput. Phys., 8 (2010), 185210.Google Scholar
[36]Dimitrijevic, M. S. and Konjevic, N., Simple estimates for Stark-broadening of ion lines in stellar plasmas, Astron. & Astrophys., 172,(1987), 345349.Google Scholar
[37]Rose, S.J., Calculations of the radiative opacity of laser-produced plasmas, J. Phys. B., 25 (1992), 16671681.CrossRefGoogle Scholar
[38]Rutten, R.J., Radiative Transfer in Stellar Atmospheres, Utretch University Lectures Notes 8th Edition, 2003.Google Scholar
[39] F.Serduke, J.D., Minguez, E., Davidson, S.J., Iglesias, C.A., WorkOp-IV summary: lessons from iron opacities, J. Quant. Spectrosc. Radiat. Transf., 65 (2000), 527541.Google Scholar
[40]Chung, H.K., Fournier, K.B., Lee, R.W., Non-LTE kinetics modeling of krypton ions: Calcula-tions of radiative cooling coefficients, High Energy Density Phys., 2 (2006), 715.Google Scholar
[41]Karzas, W.J., Latter, R., Electron radiative transitions in a Coulomb field, Astrophys. J., 6 (1961), 167212.CrossRefGoogle Scholar
[42]Gil, J.M., Rodriguez, R., Florido, R., Rubiano, J.G., Mendoza, M.A., la Nuez, A. de, Espinosa, G., Martel, P., Minguez, E., Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature, J. Quant. Spectrosc. Radiat. Transfer, 125 (2013), 123138.Google Scholar
[43]Ryutov, D., Drake, R.P., Remington, B.A., Similarity criteria for the laboratory simulation of supernova hydrodynamics, Astrophys. J., 518 (1999), 821832.Google Scholar
[44]Fryxell, B., Rutter, E., Myra, E.S., Simulations of laser experiments of radiative and non-radiative shocks, High energy Density Phys., 8 (2012), 141149.Google Scholar
[45]Falize, E., Ravasio, A., Loupias, B., Diziere, A., Gregory, C.D., Michaut, C. et al., High-energy density laboratory astrophysics studies of accretion shocks in magnetic cataclysmic vari-ables, High energy Density Phys., 8 (2012), 14.Google Scholar
[46]Edens, A.D., Ditmire, T., Hansen, J.F., Edwards, M.J., Adams, R.G., Rambo, P.K. et al., Measure-ment of the decay rate of single-frequency perturbation on blast waves, Phys. Rev. Lett., 95 (2005), 244503.Google Scholar
[47]Osterhoff, J., Symes, D.R., Edens, A.D., Moore, A.S., Hellewell, E., Ditmire, T., Radiative shell thinning in intense laser-driven blast waves, New J. Phys., 11 (2009), 023022.Google Scholar
[48]Rodriguez, R., Espinosa, G., Gil, J.M., Florido, R., Rubiano, J.G., Mendoza, M.A. et al., Analysis of microscopic magnitudes of radiative blast waves launched in xenon clusters with collisional-radiative steady-state simulations, J. Quant. Spectrosc. Radiat. Transfer, 125 (2013), 6983.Google Scholar
[49]Drake, R.P., High-Energy-Density physics, Springer, 2005.Google Scholar
[50]Klapisch, M., Busquet, M., Models for the computation of opacity of mixtures, New J. Phys., 15 (2013), 015012.Google Scholar
[51]Rodriguez, R., Gil, J.M., Espinosa, G., Florido, R., Rubiano, J.G., Mendoza, M.A. et al., Determination and analysis of plasma parameters for simulations of radiative blast waves launched in clusters of xenon and krypton, Plasma Phys. Control. Fusion, 54 (2012), 045012.Google Scholar
[52]Field, G.B., Thermal instability, Astrophys. J., 142 (1965), 531567.Google Scholar
[53]Hunter, J.H. Jr., Thermal stability and its application to the interstellar gas, Astrophys. J., 161 (1970), 451455.CrossRefGoogle Scholar
[54]Langer, S.H., Chanmugam, G., Shaviv, G., Thermal instability in accretion flows onto degenerate stars, Astrophys. J. Lett., 245 (1981), L23L26.Google Scholar
[55]Lynden-Bell, D., Tout, C.A., Russell lecture: Dark star formation and cooling instability, Astrophys. J. Lett., 558 (2001), 19.Google Scholar
[56]Vasiliev, E. O., Thermal instability in a collisionally cooled gas, Mon. Not. R. Astron. Soc., 419 (2012), 36413648.Google Scholar
[57]Chevalier, R.A., Imamura, J.N., Linear-analysis of an oscillatory instability of radiative shock-waves, Astrophys. J., 261 (1982), 543549.Google Scholar
[58]Imamura, J.N., Wolff, M., Durisen, R.H., A numerical study of the stability of radiative shocks, Astrophys. J., 276 (1984), 667676.Google Scholar
[59]Kimoto, P.A., Chernoff, D.F., Radiative instabilities in simulations of spherically symmetric supernova blast waves, Astrophys. J., 485 (1997), 274284.Google Scholar
[60]Laming, J.M., Relationship between oscillatory thermal instability and dynamical thin-shell overstability, Phys. Rev. E, 70 (2004), 057402.Google Scholar
[61]Ramachandran, B., Smith, M.D., The influence of the Mach number on the stability of radiative shocks, Mon. Not. R. Astron. Soc. 366 (2006), 586608.Google Scholar
[62]Hohenberger, M., Symes, D.R., Lazarus, J., Doyle, H.W., Carley, R.E., Moore, A.S. et al., Observation of a velocity domain cooling instability in a radiative shock, Phys. Rev. Lett., 20 (2010), 205003.CrossRefGoogle Scholar