Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T03:25:29.267Z Has data issue: false hasContentIssue false

A Constructive Method for Computing Generalized Manley-Rowe Constants of Motion

Published online by Cambridge University Press:  03 June 2015

Elena Kartashova*
Affiliation:
IFA, J. Kepler University, Linz 4040, Austria
Loredana Tec*
Affiliation:
RISC, J. Kepler University, Linz 4040, Austria
*
Corresponding author.Email:[email protected]
Get access

Abstract

The Manley-Rowe constants of motion (MRC) are conservation laws written out for a dynamical system describing the time evolution of the amplitudes in resonant triad. In this paper we extend the concept of MRC to resonance clusters of any form yielding generalized Manley-Rowe constants (gMRC) and give a constructive method how to compute them. We also give details of a Mathematica implementation of this method. While MRC provide integrability of the underlying dynamical system, gMRC generally do not but may be used for qualitative and numerical study of dynamical systems describing generic resonance clusters.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Manley, J. M. and Rowe, H. E., Some general properties of non-linear elements - Part 1, General energy relations, Proc. Inst. Rad. Engrs., 44 (1956), 904913.Google Scholar
[2]Kartashova, E., Nonlinear Resonance Anaysis: Theory, Computation, Applications, Cambridge University Press, 2010.CrossRefGoogle Scholar
[3]Kartashova, E., Nonlinear resonances of water waves, DCDS Series B, 12(3) (2009), 607621.Google Scholar
[4]Chow, C. C., Henderson, D. and Segur, H., A generalized stability criterion for resonant triad interactions, Fluid Mech., 319 (1996), 6776.Google Scholar
[5]Mauro, R. and Wang, W. C., Multiple-wave interactions in piezoelectric semiconductors, Phys. Rev. Lett., 19 (1967), 693695.Google Scholar
[6]Dubinina, V. A., Kurkin, A. A., Pelinovsky, E. N. and Poluhina, O. E., Resonance three-wave interactions of Stokes edge waves, Izvestiya Atm. Ocean. Phys., 42(2) (2006), 254261.Google Scholar
[7]Kartashova, E. and L’vov, V. S., A model of intra-seasonal oscillations in the earth atmosphere, Phys. Rev. Lett., 98 (2007), 1985011-198501-4.Google Scholar
[8]New, G., Introduction to Nonlinear Optics, Cambridge University Press, 2011.Google Scholar
[10]Harper, K. L., Bustamante, M. D. and Nazarenko, S. V., Quadratic invariants for resonant clusters in discrete wave turbulence, E-print: arXiv:1212.3156.Google Scholar
[11]Kartashova, E. and L’vov, V. S., Cluster dynamics of planetary waves, Europhys. Lett., 83 (2008), 500121-50012-6.Google Scholar
[12]Kartashova, E., Raab, C., Feurer, Ch., Mayrhofer, G. and Schreiner, W., Symbolic computations for nonlinear wave resonances, in Extreme Ocean Waves, ed. Pelinovsky, E. and Kharif, Ch. (Springer, 2008), pp. 97128, MR2503698.Google Scholar
[13]L’vov, V. S., Pomyalov, A., Procaccia, I. and Rudenko, O., Finite-dimensional turbulence of planetary waves, Phys. Rev. E, 80 (2009), 0663191-066319-25.Google Scholar
[14]Verheest, F., Proof of integrability for five-wave interactions in a case with unequal coupling constants, Phys. A Math. Gen., 21 (1988), L545L549.Google Scholar
[15]Menyuk, C. R., Chen, H. H. and Lee, Y. C., Restricted multiple three-wave interactions: Pan-levé analysis, Phys. Rev. A, 27 (1983), 15971611.Google Scholar
[16]Menyuk, C. R., Chen, H. H. and Lee, Y. C., Restricted multiple three-wave interactions: integrable cases of this system and other related systems, J. Math. Phys. 24 (1983), 10731079.Google Scholar
[17]Verheest, F., Integrability of restricted multiple three-wave interactions II: coupling constants with ratios 1 and 2, J. Math. Phys., 29 (1988), 21972201.Google Scholar
[18]Bustamante, M. D. and Kartashova, E., Resonance clustering in wave turbulent regimes: integrable dynamics, Commun. Comput. Phys., 10 (2011), 12111240.Google Scholar
[19]Dodin, I. Y., Zhmoginov, A. I. and Fisch, N. J., Manley-Rowe relations for an arbitrary discrete system, Phys. Lett. A, 372 (2008), 60946096.Google Scholar