Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T03:19:20.287Z Has data issue: false hasContentIssue false

Analyses and Applications of the Second-Order Cross Correlation in the Passive Imaging

Published online by Cambridge University Press:  17 May 2016

Lingdi Wang*
Affiliation:
School of Mathematical Sciences, Fudan University, Shanghai 200433, P.R. China
Wenbin Chen*
Affiliation:
Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433, P.R. China
Jin Cheng*
Affiliation:
Key Laboratory for Information Science of Electromagnetic Waves and School of Mathematical Sciences, Fudan University, Shanghai 200433, P.R. China
*
*Corresponding author. Email addresses:[email protected] (L. Wang), [email protected] (W. Chen), [email protected] (J. Cheng)
*Corresponding author. Email addresses:[email protected] (L. Wang), [email protected] (W. Chen), [email protected] (J. Cheng)
*Corresponding author. Email addresses:[email protected] (L. Wang), [email protected] (W. Chen), [email protected] (J. Cheng)
Get access

Abstract

The first-order cross correlation and corresponding applications in the passive imaging are deeply studied by Garnier and Papanicolaou in their pioneer works. In this paper, the results of the first-order cross correlation are generalized to the second-order cross correlation. The second-order cross correlation is proven to be a statistically stable quantity, with respective to the random ambient noise sources. Specially, with proper time scales, the stochastic fluctuation for the second-order cross correlation converges much faster than the first-order one. Indeed, the convergent rate is of order , with 0 < α < 1. Besides, by using the stationary phase method in both homogeneous and scattering medium, similar behaviors of the singular components for the second-order cross correlation are obtained. Finally, two imaging methods are proposed to search for a target point reflector: One method is based on the imaging function, and has a better signal-to-noise rate; Another method is based on the geometric property, and can improve the bad range resolution of the imaging results.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ammari, H., Bretin, E., Garnier, J. and Wahab, A., Noise source localization in an attenuating medium, SIAM J. Appl. Math., 72(2012), 317336.CrossRefGoogle Scholar
[2]Ammari, H., Garnier, J. and Jing, W., Passive array correlation-based imaging in a random waveguide, Multiscale Model. Simul., 11(2013), no. 2, 656681.Google Scholar
[3]Ammari, H., Garnier, J., Jing, W., Kang, H., Lim, M., Solna, K. and Wang, H., Mathematical and statistical methods for multistatic imaging, Lecture Notes in Mathematics, 2098, Springer, Cham, 2013.Google Scholar
[4]Ammari, H., Garnier, J., and Jugnon, V., Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging, Discrete Contin. Dyn. Syst. Ser. S8(2015), no. 3, 389417.Google Scholar
[5]Bardos, C., Garnier, J. and Papanicolaou, G., Identification of Green's functions singularities by cross correlation of noisy signals, Inverse Problems, 24(2008), 015011.CrossRefGoogle Scholar
[6]Bleistein, N., Cohen, J. K. and Stockwell, J. W. Jr, Mathematics of multidimensional seismic imaging, migration, and inversion, Springer Verlag, New York, 2001.Google Scholar
[7]Borcea, L., Papanicolaou, G. and Tsogka, C., Adaptive interferometric imaging in clutter and optimal illumination, Inverse Problems, 22(2006), 14051436.CrossRefGoogle Scholar
[8]Borcea, L., Papanicolaou, G. and Tsogka, C., Optimal illumination and waveform design for imaging in random media, J. Acoust. Soc. Am., 122(2007), 35073518.CrossRefGoogle Scholar
[9]Born, M. and Wolf, E., Principles of optics, Cambridge University Press, Cambridge, 1999.Google Scholar
[10]Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O. and Nercessian, A., Towards forecasting volcanic eruptions using seismic noise, Nature Geoscience, 1(2008), 126130.CrossRefGoogle Scholar
[11]Brenguier, F., Shapiro, N. M., Campillo, M., Nercessian, A. and Ferrazzini, V., 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations, Geophys. Res. Lett., 34(2007), L02305.CrossRefGoogle Scholar
[12]Curtis, A., Gerstoft, P., Sato, H., Snieder, R. and Wapenaar, K., Seismic interferometry-turning noise into signal, The Leading Edge, 25(2006), 10821092.Google Scholar
[13]Duvall, T. L. Jr, Jefferies, S. M., Harvey, J. W. and Pomerantz, M. A., Time-distance helioseismology, Nature, 362(1993), 430432.Google Scholar
[14]Garnier, J. and Papanicolaou, G., Passive sensor imaging using cross correlations of noisy signals in a scattering medium, SIAM J. Imaging Sciences, 2(2009), 396437.CrossRefGoogle Scholar
[15]Garnier, J. and Papanicolaou, G., Resolution analysis for imaging with noise, Inverse Problem, 26(2010), 074001.CrossRefGoogle Scholar
[16]Garnier, J. and Papanicolaou, G., Resolution enhancement from scattering in passive sensor imaging with cross correlations, Inverse Problems and Imaging, 8(2014), 645683.Google Scholar
[17]Isserlis, L., On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables, Biometrika, 12(1918), 134139.Google Scholar
[18]Lanczos, C., Linear Differential Operators, Van Nostrand, London, 1961.Google Scholar
[19]Larose, E., Margerin, L., Derode, A., Van Tiggelen, B., Campillo, M., Shapiro, N., Paul, A., Stehly, L. and Tanter, M., Correlation of random wave fields: an interdisciplinary review, Geophysics, 71(2006), SI11-SI21.Google Scholar
[20]Qi, C., Chen, Q. and Chen, Y., A new method for seismic imaging from ambient seismic noise, Progress in Geophysics, 22(2007), 771777.Google Scholar
[21]Rickett, J. and Claerbout, J., Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring, The Leading Edge, 18(1999), 957960.Google Scholar
[22]Schuster, G. T., Yu, J., Sheng, J. and Rickett, J., Interferometric daylight seismic imaging, Geophysical Journal International, 157(2004), 832852.CrossRefGoogle Scholar
[23]Shapiro, N. M., Campillo, M., Stehly, L. and Ritzwoller, M. H., High-resolution surface wave tomography from ambient noise, Science, 307(2005), 16151618.Google Scholar
[24]Snieder, R., Extrating the Green's function of attenuating heterogeneous acoustic media from uncorrelated waves, J. Acoust. Soc. Amer., 121(2007), 26372643.CrossRefGoogle ScholarPubMed
[25]Stehly, L., Campillo, M. and Shapiro, N. M., A study of the seismic noise from its long-range correlation properties, Geophys. Res. Lett., 111(2006), B10306.CrossRefGoogle Scholar
[26]Colin De Verdière, Y., Semiclassical analysis and passive imaging, Nonlinearity, 22(2009), R45-R75.Google Scholar
[27]Wang, L., Theorical analysis and numerical methods for a series of problems of wave equatinos with different source terms, Ph.D thesis, Fudan University, 2015.Google Scholar
[28]Wapenaar, K. and Fokkema, J., Green's function representations for seismic interferometry, Geophysics, 71(2006), SI33-SI46.Google Scholar
[29]Weaver, R. and Lobkis, O. I., Ultrasonics without a source: Thermal fluctuarion crrelations at MHz frequencies, Phys. Rev. Lett., 87(2001), 134301.CrossRefGoogle ScholarPubMed