1. Introduction
Let
$n\gt k\gt t$
be positive integers and let
$[n]=\{1,2,\ldots,n\}$
be the standard
$n$
-element set. For
$1\leq i\lt j\leq n$
, let
$[i,j]=\{i,i+1,\ldots,j\}$
. Let
$\binom{[n]}{k}$
denote the collection of all
$k$
-subsets of
$[n]$
. Subsets of
$\binom{[n]}{k}$
are called
$k$
-uniform hypergraphs or
$k$
-graphs for short. A
$k$
-graph
$\mathcal{F}$
is called
$t$
-intersecting if
$|F\cap F'|\geq t$
for all
$F,F'\in{\mathcal{F}}$
. In case of
$t=1$
we often use the term intersecting instead of 1-intersecting. Investigating various properties of
$t$
-intersecting families is one of the central topics of extremal set theory (cf. the recent book of Gerbner and Patkós [Reference Gerbner and Patkós13]). Let us state the quintessential result of this topic.
Erdős-Ko-Rado Theorem ([Reference Erdős, Ko and Rado3]). Suppose that
$n\geq n_0(k,t)$
and
${\mathcal{F}}\subset \binom{[n]}{k}$
is
$t$
-intersecting. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn1.png?pub-status=live)
Remark 1. For
$t=1$
the exact value
$n_0(k,t)=(k-t+1)(t+1)$
was proved in [Reference Erdős, Ko and Rado3]. For
$t\geq 15$
it is due to [Reference Frankl5]. Finally Wilson [Reference Wilson21] closed the gap
$2\leq t\leq 14$
with a proof valid for all
$t$
.
Let us note that the full t-star,
$\left \{F\in \binom{[n]}{k}\colon [t]\subset F\right \}$
shows that (1) is best possible. In general, for a set
$T\subset [n]$
let
${\mathcal{S}}_T=\left \{S\in \binom{[n]}{k}\colon T\subset S\right \}$
denote the star of T.
For
$t=1$
, there is a strong stability for the Erdős-Ko-Rado Theorem.
Theorem 1.1 (Hilton-Milner Theorem [Reference Hilton and Milner14]). Suppose that
$n\gt 2k\geq 4$
,
${\mathcal{F}}\subset \binom{[n]}{k}$
is intersecting and
$\mathcal{F}$
is not a star, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn2.png?pub-status=live)
Let us define the Hilton-Milner Family
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU1.png?pub-status=live)
showing that (2) is best possible.
Let us recall the notion of immediate shadow,
$\partial{\mathcal{F}}$
: For
${\mathcal{F}}\subset \binom{[n]}{k}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU2.png?pub-status=live)
If for some
$G\in \partial{\mathcal{F}}$
there is only one choice of
$F\in{\mathcal{F}}$
satisfying
$G\subset F$
then
$G$
is called unique or a unique shadow. Note that in the full star
${\mathcal{S}}_{\{x\}}$
for each member
$S$
,
$S\setminus \{x\}$
is unique. In the Hilton-Milner family
${\mathcal{H}}(n,k)$
, each member
$H\in{\mathcal{H}}(n,k)\setminus \{[2,k+1]\}$
contains a unique shadow
$H\setminus \{1\}$
. Just for curiosity let us mention that if each member of
${\mathcal{F}}\subset \binom{[n]}{k}$
contains a unique shadow then
$|{\mathcal{F}}|\leq \binom{n-1}{k-1}$
.
Let us introduce the central notion of the present paper.
Definition 1.2. For an integer
$r\geq 2$
and a family
${\mathcal{F}}\subset \binom{[n]}{k}$
, we say that
$\mathcal{F}$
is
$r$
-complete if every
$G\in \partial{\mathcal{F}}$
is contained in at least
$r$
members of
$\mathcal{F}$
.
Note that
$\mathcal{F}$
is
$r$
-complete if and only if the minimum non-zero co-degree of
$\mathcal{F}$
is at least
$r$
. This notion has been introduced and used by Kostochka et al. [Reference Kostochka, Mubayi and Verstraëte17–Reference Kostochka, Mubayi and Verstraëte19] to determine hypergraph Turán numbers for paths, cycles and trees.
Clearly, if
${\mathcal{F}}\subset \binom{[n]}{k}$
is
$r$
-complete with
$r\geq 2$
, then
$\mathcal{F}$
is far from a star. It is natural to ask for the maximum size of an
$r$
-complete intersecting family. Let us define the function:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU3.png?pub-status=live)
Let us give some examples. For
$1\leq r\lt k$
the complete
$k$
-graph
$\binom{[k+r]}{k}$
is intersecting and
$(r+1)$
-complete. This shows in particular that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn3.png?pub-status=live)
Example 1.3. For
$n\geq k\geq r\geq 1$
define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU4.png?pub-status=live)
Clearly
${\mathcal{L}}(n,k,r)$
is intersecting,
$r$
-complete and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU5.png?pub-status=live)
Our main result shows that this example is best possible for
$n\geq n_0(k,r)$
.
Theorem 1.4.
For
$n\geq 28k$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn4.png?pub-status=live)
Moreover, up to isomorphism
${\mathcal{L}}(n,k,2)$
is the only family attaining equality.
Theorem 1.5.
For
$k\geq 3$
,
$r\geq 3$
and
$n\geq n_0(k,r)$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn5.png?pub-status=live)
For a positive integer
$\ell$
and an
$\ell$
-graph
$\mathcal{H}$
, define the clique family
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU6.png?pub-status=live)
Define
$\nu ({\mathcal{F}})$
, the matching number of
$\mathcal{F}$
as the maximum number of pairwise disjoint edges in
$\mathcal{F}$
. Note that
$\nu ({\mathcal{F}})=1$
iff
$\mathcal{F}$
is intersecting. We are going to prove Theorem 1.4 using the following result exhibiting a surprising connection between the matching number and the size of the clique family. Define the Erdős-family
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU7.png?pub-status=live)
Note that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU8.png?pub-status=live)
Theorem 1.6.
Let
${\mathcal{F}}\subset \binom{[n]}{k}$
be a family with
$\nu ({\mathcal{F}})\leq s$
. If
$n\geq 5sk+13k$
and
$s\geq 3$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU9.png?pub-status=live)
Moreover, up to isomorphism
${\mathcal{E}}(n,k,s)$
is the only family attaining equality.
Let us define the notion of
$r$
-complete edges.
Definition 1.7. For an integer
$r\geq 2$
and a family
${\mathcal{F}}\subset \binom{[n]}{k}$
, we say that
$F\in{\mathcal{F}}$
is
$r$
-complete if every
$G\in \binom{F}{k-1}$
is contained in at least
$r$
members of
$\mathcal{F}$
.
Clearly,
$\mathcal{F}$
is
$r$
-complete if and only if every
$F\in{\mathcal{F}}$
is
$r$
-complete. One can also ask for the maximum number of
$r$
-complete edges in an intersecting family. For an intersecting family
${\mathcal{F}}\subset \binom{[n]}{k}$
, define
${\mathcal{F}}^*_r({\mathcal{F}})$
as the family of all
$r$
-complete edges in
$\mathcal{F}$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU10.png?pub-status=live)
If
$\mathcal{F}$
is
$r$
-complete then we have
${\mathcal{F}}^*_r({\mathcal{F}})={\mathcal{F}}$
, implying that
$f(n,k,r)\leq f^*(n,k,r)$
. For
${\mathcal{F}}'\subset{\mathcal{F}}$
, we say that
${\mathcal{F}}'$
is relatively
$r$
-complete with respect to
$\mathcal{F}$
if every
$F'\in{\mathcal{F}}'$
is an
$r$
-complete edge in
$\mathcal{F}$
. Clearly
${\mathcal{F}}^*_r({\mathcal{F}})$
is a relatively
$r$
-complete family of the maximum size with respect to
$\mathcal{F}$
.
Our next result determines
$f^*(n,k,r)$
for all
$k\geq 3$
and
$r\geq 2$
, asymptotically.
Theorem 1.8.
For
$k\geq 3$
,
$r\geq 2$
and
$n\geq n_0(k,r)$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn6.png?pub-status=live)
The next proposition shows that the term
$O(n^{k-r})$
in (6) cannot be removed for
$k\geq 5$
and
$4\leq r\leq k-1$
.
Proposition 1.9.
For
$k\geq 5$
,
$4\leq r\leq k-1$
and
$n\geq k+r-1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU11.png?pub-status=live)
Proof. For
$4\leq r\leq k-1$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU12.png?pub-status=live)
and let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU13.png?pub-status=live)
It is easy to check that
$B(r)$
is intersecting, implying that
${\mathcal{I}}(n,k,r)$
is intersecting. Since
${\mathcal{S}}_{\{1,2,3\}}\subset{\mathcal{S}}_{\{1,2\}}$
and
${\mathcal{S}}_{[r+2]\setminus \{3\}}\subset{\mathcal{S}}_{\{1,2\}}$
,
${\mathcal{I}}^*(n,k,r)\subset{\mathcal{I}}(n,k,r)$
. In the rest of the proof, we show that
${\mathcal{I}}^*(n,k,r)$
is relatively
$r$
-complete with respect to
${\mathcal{I}}(n,k,r)$
.
For any
$F\in{\mathcal{S}}_{\{1,2,3\}}$
, since
$\mathcal{S}_{\{1,2\}}\subset{\mathcal{I}}(n,k,r)$
and
$n\geq k+r-1$
, we see that for each
$x\in F\setminus \{1,2\}$
,
$F\setminus \{x\}$
is covered by at least
$r$
members of
${\mathcal{I}}(n,k,r)$
. Moreover, since
$\mathcal{S}_{\{3,i,j\}}\subset{\mathcal{I}}(n,k,r)$
for
$i\in \{1,2\}$
and
$j\in \{4,5,\ldots, r+2\}$
, we infer that
$F\setminus \{3-i\}$
is covered by at least
$r$
members of
${\mathcal{I}}(n,k,r)$
for
$i=1,2$
. Thus
${\mathcal{S}}_{\{1,2,3\}}$
is relatively
$r$
-complete with respect to
${\mathcal{I}}(n,k,r)$
.
Let
$F\in{\mathcal{S}}_{[r+2]\setminus \{3\}}$
and
$G\in \binom{F}{k-1}$
. If
$\{1,2\}\subset G$
, then by
$\mathcal{S}_{\{1,2\}}\subset{\mathcal{I}}(n,k,r)$
and
$n\geq k+r$
we infer that
$G$
is covered by at least
$r$
members of
${\mathcal{I}}(n,k,r)$
. If
$i\notin G$
for
$i=1,2$
, since
${\mathcal{S}}_{[r+2]\setminus \{i,3\}}\subset{\mathcal{I}}(n,k,r)$
and
$n\geq k+r-1$
, then
$G$
is also covered by at least
$r$
members of
${\mathcal{I}}(n,k,r)$
. Hence
${\mathcal{S}}_{[r+2]\setminus \{3\}}$
is relatively
$r$
-complete with respect to
${\mathcal{I}}(n,k,r)$
. Therefore,
${\mathcal{I}}^*(n,k,r)$
is relatively
$r$
-complete with respect to
${\mathcal{I}}(n,k,r)$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU14.png?pub-status=live)
The rest of the paper is organized as follows. We list some results that are needed in Section 2. We prove Theorems 1.4 and 1.6 in Section 3 and prove Theorem 1.5 in Section 4. The proof of Theorem 1.8 splits into two parts. In Section 5, we prove it for
$3\leq r\lt k$
. In Section 6, we prove it for
$r\geq k$
. Finally, we give some concluding remarks in Section 7.
2. Preliminaries
In this section, we list some notions and results that are needed for the proofs.
For a family
${\mathcal{F}}\subset \binom{[n]}{k}$
define the family of transversals,
${\mathcal{T}}({\mathcal{F}})$
by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU15.png?pub-status=live)
Note that
$\mathcal{F}$
is intersecting iff
${\mathcal{F}}\subset{\mathcal{T}}({\mathcal{F}})$
. Note also that
${\mathcal{T}}({\mathcal{F}})$
is not uniform in general. Set
${\mathcal{T}}^{(k)}({\mathcal{F}}) = \{T\in{\mathcal{T}}({\mathcal{F}})\colon |T|=k\}$
. If
${\mathcal{F}}={\mathcal{T}}^{(k)}({\mathcal{F}})$
then
$\mathcal{F}$
is called saturated. It is equivalent to the fact that
${\mathcal{F}}\cup \{H\}$
is no longer intersecting for
$H\in \binom{[n]}{k}\setminus{\mathcal{F}}$
. It should be clear that in the definition of
$f^*(n,k,r)$
it is sufficient to consider saturated intersecting families
$\mathcal{F}$
.
Let us recall a special case of the Katona Intersecting Shadow Theorem [Reference Katona15].
Theorem 2.1 ([Reference Katona15]). Suppose that
${\mathcal{F}}\subset \binom{[n]}{k}$
is intersecting. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn7.png?pub-status=live)
We need the following generalization of (7) as well.
Theorem 2.2 ([Reference Frankl8]). Suppose that
${\mathcal{F}}\subset \binom{[n]}{k}$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn8.png?pub-status=live)
We need also a classical result of Bollobás, the so-called Bollobás Set-pair Inequality.
Theorem 2.3 ([Reference Bollobás1]). Let
$a,b$
be positive integers,
$A_1,\ldots,A_m$
$a$
-element sets,
$B_1,\ldots,B_m$
$b$
-element sets such that
$A_i\cap B_j=\emptyset$
iff
$i=j$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn9.png?pub-status=live)
There is a very important operation on families of sets which was discovered by Erdős et al. [Reference Erdős, Ko and Rado3]. It is called shifting and it is known not to increase the matching number
$\nu ({\mathcal{F}})$
([Reference Frankl7]) and not to decrease the size of
${\mathcal{K}}({\mathcal{F}})$
(cf. [Reference Liu and Wang20]).
Let us define the shifting partial order
$\prec$
. For two
$k$
-sets
$A$
and
$B$
where
$A=\{a_1,\ldots,a_k\}$
,
$a_1\lt \ldots \lt a_k$
and
$B=\{b_1,\ldots,b_k\}$
,
$b_1\lt \ldots \lt b_k$
we say that
$A$
precedes
$B$
and denote it by
$A\prec B$
if
$a_i\leq b_i$
for all
$1\leq i\leq k$
.
A family
${\mathcal{F}}\subset \binom{[n]}{k}$
is called shifted (or initial) if
$A\prec B$
and
$B\in{\mathcal{F}}$
always imply
$A\in{\mathcal{F}}$
. By repeated shifting one can transform an arbitrary
$k$
-graph into a shifted
$k$
-graph with the same number of edges.
We need the following inequality generalizing the case
$t=1$
of the Erdős-Ko-Rado Theorem.
Proposition 2.4 ([Reference Frankl7]). Suppose that
${\mathcal{F}}\subset \binom{[n]}{k}$
then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn10.png?pub-status=live)
Finally we need the following stability theorem concerning the Erdős-Ko-Rado Theorem.
Hilton-Milner-Frankl Theorem ([Reference Frankl6,Reference Hilton and Milner14]). Suppose that
${\mathcal{F}}\subset \binom{[n]}{k}$
is
$t$
-intersecting,
$\mathcal{F}$
is not a
$t$
-star and
$n\geq (k-t+1)(t+1)$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn11.png?pub-status=live)
3. Intersecting families without unique shadow
In this section, we first prove Theorem 1.4 by assuming Theorem 1.6. Then by using the decomposition method of a shifted family introduced in [Reference Frankl9], we give a proof of Theorem 1.6.
Actually, we shall prove the following version of Theorem 1.4, which also gives the
$r=2$
case of Theorem 1.8.
Theorem 3.1.
For
$n\geq 28k$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn12.png?pub-status=live)
Moreover, up to isomorphism
${\mathcal{L}}(n,k,2)$
is the only family attaining equality.
Proof of Theorem
1.4. Recall that
${\mathcal{L}}(n,k,2)$
is 2-complete intersecting and
$f(n,k,2)\leq f^*(n,k,2)$
. It follows that
$|{\mathcal{L}}(n,k,2)|\leq f(n,k,2)\leq f^*(n,k,2)$
. Thus we are left to show
$f^*(n,k,2)\leq |{\mathcal{L}}(n,k,2)|$
.
Let
${\mathcal{F}}\subset \binom{[n]}{k}$
be an intersecting family. Let
${\mathcal{F}}^*$
be the family of 2-complete sets in
$\mathcal{F}$
and let
${\mathcal{H}}=\partial{{\mathcal{F}}^*}$
. Note that this guarantees that every member of
$\mathcal{H}$
is contained in at least two members of
$\mathcal{F}$
.
Claim 1.
$\nu ({\mathcal{H}})\leq 3$
.
Proof. Suppose for contradiction that
$D_i=F_i\cap G_i$
,
$1\leq i\leq 4$
, are pairwise disjoint sets in
$\mathcal{H}$
and
$F_i,G_i\in{\mathcal{F}}$
. Define
$x_i,y_i$
by
$F_i\setminus D_i =\{x_i\}$
,
$G_i\setminus D_i =\{y_i\}$
. Since
$|\{x_i,y_i\}|=2$
, by symmetry we may assume that
$(x_1,y_1)\cap D_4= \emptyset$
. This implies
$F_1\cap D_4=\emptyset, G_1\cap D_4=\emptyset$
. From
$F_4\cap F_1\neq \emptyset$
,
$F_4\cap G_1\neq \emptyset$
,
$G_4\cap F_1\neq \emptyset$
and
$G_4\cap G_1\neq \emptyset$
, we infer
$(x_4,y_4)\subset D_1$
. Consequently
$F_4\cap D_p=\emptyset$
,
$G_4\cap D_p=\emptyset$
for
$p=2,3$
. This implies as above
$(x_p,y_p)\subset D_4$
. Now
$x_2\neq x_3$
or
$x_2\neq y_3$
(or both) hold. By symmetry
$x_2\neq x_3$
. Then
$F_2\cap F_3=\emptyset$
, a contradiction.
By Theorem 1.6 and Claim 1, for
$n\geq (5\times 3+13)k=28k$
we have
$|{\mathcal{F}}^*|\leq |{\mathcal{K}}({\mathcal{H}})|\leq |{\mathcal{K}}({\mathcal{E}}(n,k,3))|=|{\mathcal{L}}(n,k,2)|$
. The uniqueness follows from Theorem 1.6.
The families
${\mathcal{F}}_0,{\mathcal{F}}_1, \ldots,{\mathcal{F}}_s$
are called overlapping if there is no choice of
$F_i \in{\mathcal{F}}_i$
such that
$F_0, F_1, \ldots, F_s$
are pairwise disjoint. For the proof of Theorem 1.6 the following lemma is needed. A similar lemma was proved in [Reference Frankl and Wang11], although without characterization of the case of equality.
Lemma 3.2.
Let
${\mathcal{F}}_{0}\subset{\mathcal{F}}_{1}\subset \cdots \subset{\mathcal{F}}_{s}\subset \binom{Y}{\ell }$
be overlapping families and let
$p_0\geq p_1\geq \ldots \geq p_s$
be positive reals. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU16.png?pub-status=live)
For
$|Y|\geq (d_{\vec{p}}+1) \ell$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn13.png?pub-status=live)
where the equality holds iff
${\mathcal{F}}_{1}= \cdots ={\mathcal{F}}_{s}=\binom{Y}{\ell }$
,
${\mathcal{F}}_0=\emptyset$
.
Proof. Let
${\mathcal{F}}_0\subset{\mathcal{F}}_1\subset \cdots \subset{\mathcal{F}}_s\subset \binom{Y}{\ell }$
be overlapping families. Let
$ t = \lfloor |Y|/\ell \rfloor \geq\lfloor d_{\vec{p}}\rfloor +1\geq s+1$
and choose a random matching
$F_1,F_2,\ldots,F_t$
from
$\binom{Y}{\ell }$
. Consider the weighted bipartite graph
$G$
on partite sets
$\{F_1,F_2,\ldots,F_t\}$
and
$\{{\mathcal{F}}_0,{\mathcal{F}}_1, \cdots,{\mathcal{F}}_s\}$
where we have an edge
$(F_i,{\mathcal{F}}_j)$
iff
$F_i\in{\mathcal{F}}_j$
. This edge gets weight
$p_j$
.
Since
${\mathcal{F}}_{0}\subset{\mathcal{F}}_{1}\subset \cdots \subset{\mathcal{F}}_{s}$
are overlapping,
$G$
has matching number at most
$s$
. Applying the König-Hall Theorem we can find
$s$
vertices covering all edges of the bipartite graph
$G$
. Let
$F_1,\ldots,F_q$
be the vertices of the covering set chosen from the random matching and
${\mathcal{F}}_{q+1}, \ldots,{\mathcal{F}}_s$
the remaining
$s-q$
chosen from the families.
The total weight of the edges covered by
$F_i$
is at most
$p_0+\ldots +p_s$
. The total weight of the edges covered by
${\mathcal{F}}_j$
is at most
$tp_j$
. Thus, the total weight of the edges in
$G$
is at most
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn14.png?pub-status=live)
Note that
$p_1\geq \ldots \geq p_s$
implies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU17.png?pub-status=live)
It follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn15.png?pub-status=live)
By (14) and (15), the total weight of the edges in
$G$
is at most
$t(p_{1}+\ldots +p_s)$
.
Since the probability
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU18.png?pub-status=live)
the expected value of the total weight of the edges in
$G$
is
$\sum _{j=0}^s tp_j \frac{|{\mathcal{F}}_j|}{\binom {|Y|}{\ell}}$
. Thus (13) follows. In case of equality
$q=0$
. Then for every
$t$
-matching
$F_1,F_2,\ldots,F_t$
in
$Y$
,
${\mathcal{F}}_0$
has degree 0 and
${\mathcal{F}}_i$
has degree
$t$
in
$G$
for
$i=1,\ldots,s$
. Hence the equality holds iff
${\mathcal{F}}_{1}= \cdots ={\mathcal{F}}_{s}=\binom{Y}{\ell }$
,
${\mathcal{F}}_0=\emptyset$
.
For the proof of Theorem 1.6 we also need the following proposition, which is proved in [Reference Liu and Wang20]. Here we include a short proof for self-containedness.
Proposition 3.3.
For
${\mathcal{F}} \subset \binom{[n]}{k}$
and
$1\leq i\lt j\leq n$
,
$|{\mathcal{K}}(S_{ij}({\mathcal{F}}))|\geq |{\mathcal{K}}({\mathcal{F}})|$
.
Proof. We prove the statement by defining an injective map
$\sigma$
from
${\mathcal{K}}({\mathcal{F}})\setminus{\mathcal{K}}(S_{ij}({\mathcal{F}}))$
to
${\mathcal{K}}(S_{ij}({\mathcal{F}}))\setminus{\mathcal{K}}({\mathcal{F}})$
. Let
$K\in{\mathcal{K}}({\mathcal{F}})\setminus{\mathcal{K}}(S_{ij}({\mathcal{F}}))$
. Clearly
$j\in K$
and
$i\notin K$
, and we define
$\sigma (K)=K'=(K\setminus \{j\})\cup \{i\}$
. We show that
$\sigma$
is well-defined by checking
$K'\in{\mathcal{K}}(S_{ij}({\mathcal{F}}))\setminus{\mathcal{K}}({\mathcal{F}})$
. Firstly, suppose that
$K'\notin{\mathcal{K}}(S_{ij}({\mathcal{F}}))$
and let
$F'\in \binom{K'}{k}$
be an edge not in
$S_{ij}({\mathcal{F}})$
. If
$i\notin F'$
then
$F'=K\setminus \{j\}$
and
$S_{ij}(F')=F'$
, implying that
$F'\in S_{ij}({\mathcal{F}})$
, a contradiction. If
$i\in F'$
, then
$F=(F'\setminus \{i\})\cup \{j\}\subset K$
is an edge of
$\mathcal{F}$
since
$K\in{\mathcal{K}}({\mathcal{F}})$
. Hence after shifting we have
$F'\in S_{ij}({\mathcal{F}})$
, a contradiction. This shows
$K'\in{\mathcal{K}}(S_{ij}({\mathcal{F}}))$
. Secondly, if
$K'\in{\mathcal{K}}({\mathcal{F}})$
then
$K\in{\mathcal{K}}({\mathcal{F}})$
implies
$K\in{\mathcal{K}}(S_{ij}({\mathcal{F}}))$
, contradicting the assumption that
$K\notin{\mathcal{K}}(S_{ij}({\mathcal{F}}))$
. Thus
$K'\in{\mathcal{K}}(S_{ij}({\mathcal{F}}))\setminus{\mathcal{K}}({\mathcal{F}})$
and
$\sigma$
is indeed a map from
${\mathcal{K}}({\mathcal{F}})\setminus{\mathcal{K}}(S_{ij}({\mathcal{F}}))$
to
${\mathcal{K}}(S_{ij}({\mathcal{F}}))\setminus{\mathcal{K}}({\mathcal{F}})$
. Clearly,
$\sigma$
is injective and the proposition follows.
Proof of Theorem
1.6. Since the shifting operator does not increase the matching number and does not decrease the size of
${\mathcal{K}}({\mathcal{F}})$
, we may assume that
$\mathcal{F}$
is shifted. Let
${\mathcal{K}}={\mathcal{K}}({\mathcal{F}})$
and
${\mathcal{K}}^*={\mathcal{K}}({\mathcal{E}}(n,k,s))$
. For any
$S\subset [s+1]$
and a family
${\mathcal{H}}\subset \binom{[n]}{h}$
, define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU19.png?pub-status=live)
Clearly
${\mathcal{H}}(S)\subset \binom{[s+2,n]}{h-|S|}$
.
For
$|S|\geq 3$
, we have
${\mathcal{K}}^*(S)=\binom{[s+2,n]}{k+1-|S|}$
. It follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn16.png?pub-status=live)
We are left to compare
$|{\mathcal{K}}(S)|$
with
$|{\mathcal{K}}^*(S)|$
for all
$S\subset [s+1]$
with
$|S|\leq 2$
.
Claim 2.
${\mathcal{K}}(\{i\})={\mathcal{F}}(\emptyset )$
for
$i=1,2,\ldots,s+1$
and
${\mathcal{K}}(\{i,j\})={\mathcal{F}}(\{j\})$
for
$1\leq i\lt j\leq s+1$
.
Proof. For
$F\in{\mathcal{K}}(\{i\})$
,
$F\cup \{i\}\in{\mathcal{K}}$
implies that
$F\in{\mathcal{F}}(\emptyset )$
. Let
$F\in{\mathcal{F}}(\emptyset )$
. Since
$x\geq s+2\gt i$
each
$x\in F$
, by shiftedness
$(F\setminus \{x\})\cup \{i\}\in{\mathcal{F}}$
. It follows that
$\binom{F\cup \{i\}}{k}\subset{\mathcal{F}}$
and
$F\cup \{i\}\in{\mathcal{K}}$
. Thus
$F\in{\mathcal{K}}(\{i\})$
. Therefore
${\mathcal{K}}(\{i\})={\mathcal{F}}(\emptyset )$
.
For any
$E\in{\mathcal{K}}(\{i,j\})$
we have
$\binom{E\cup \{i,j\}}{k}\subset{\mathcal{F}}$
. It follows that
$E\cup \{j\}\in{\mathcal{F}}$
. Thus
$E\in{\mathcal{F}}(\{j\})$
. Let
$E\in{\mathcal{F}}(\{j\})$
. By shiftedness and
$i\lt j$
,
$E\cup \{i\}\in{\mathcal{F}}$
. Moreover,
$E\cup \{i,j\}\setminus \{x\}\in{\mathcal{F}}$
for each
$x\in E$
. That is,
$\binom{E\cup \{i,j\}}{k}\subset{\mathcal{F}}$
and
$E\cup \{i,j\}\in{\mathcal{K}}$
. Thus
$E\in{\mathcal{K}}(\{i,j\})$
. Therefore
${\mathcal{K}}(\{i,j\})={\mathcal{F}}(\{j\})$
.
Note that for any
$K\in{\mathcal{K}}(\emptyset )$
we have
$\binom{K}{k}\subset{\mathcal{F}}(\emptyset )$
. It follows that
$\partial{\mathcal{K}}(\emptyset )\subset{\mathcal{F}}(\emptyset )$
. Since
$\nu ({\mathcal{K}}(\emptyset )) \leq s$
, by (8) we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn17.png?pub-status=live)
By Claim 2,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU20.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU21.png?pub-status=live)
It follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn18.png?pub-status=live)
Again by shiftedness
$\partial{\mathcal{F}}(\emptyset )\subset{\mathcal{F}}(\{s+1\})$
, and using (8) we infer
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn19.png?pub-status=live)
Substituting (19) into (18), we arrive at
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU22.png?pub-status=live)
By shiftedness,
${\mathcal{F}}(\{1\})\supset \cdots \supset{\mathcal{F}}(\{s+1\})$
are overlapping families. Set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU23.png?pub-status=live)
and set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU24.png?pub-status=live)
Then
$p_0\geq p_1\geq \ldots \geq p_s$
and by
$s\geq 3$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU25.png?pub-status=live)
By Lemma 3.2, for
$n-s-1\geq (5s+13)(k-1)\geq (d_{\vec{p}}+1)(k-1)$
we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn20.png?pub-status=live)
Adding (16) and (20), we conclude that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU26.png?pub-status=live)
Let
$\mathcal{F}$
be a family with
$\nu ({\mathcal{F}})\leq s$
and
$|{\mathcal{K}}({\mathcal{F}})|= |{\mathcal{K}}({\mathcal{E}}(n,k,s))|$
. If
$\mathcal{F}$
is shifted, then by Lemma 3.2 we have
${\mathcal{F}}(\{s+1\})=\emptyset$
. It follows that
${\mathcal{F}}={\mathcal{E}}(n,k,s)$
. Now assume that
$\mathcal{F}$
is not shifted. Then it changes to
${\mathcal{E}}(n,k,s)$
by applying shifting repeatedly. Let
$\mathcal{G}$
be the last family that is not isomorphic to
${\mathcal{E}}(n,k,s)$
in this process. That is,
$\mathcal{G}$
is not isomorphic to
${\mathcal{E}}(n,k,s)$
but
$S_{ij}({\mathcal{G}})$
is isomorphic to
${\mathcal{E}}(n,k,s)$
for some
$1\leq i\lt j\leq n$
. By symmetry, we may assume that
${\mathcal{G}}\neq{\mathcal{E}}(n,k,s)$
and
$S_{s,s+1}({\mathcal{G}})={\mathcal{E}}(n,k,s)$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU27.png?pub-status=live)
Since
$S_{s,s+1}({\mathcal{G}})={\mathcal{E}}(n,k,s)$
, we see
${\mathcal{G}}(s\overline{(s+1)})\cup{\mathcal{G}}(\overline{s}(s+1)) =\binom{[n]\setminus \{s,s+1\}}{k-1}$
and
${\mathcal{G}}(s\overline{(s+1)})\cap{\mathcal{G}}(\overline{s}(s+1)) =\emptyset$
. It follows that for each
$E\in \binom{[n]\setminus \{s,s+1\}}{k-1}$
, exactly one of
$E\cup \{s\}\in{\mathcal{G}}$
and
$E\cup \{s+1\}\in{\mathcal{G}}$
holds. Now consider a graph
$G$
on the vertex set
$\binom{[n]\setminus \{s,s+1\}}{k-1}$
where
$(E_1,E_2)$
forms an edge if and only if
$|E_1\cap E_2|=k-2$
. It is easy to see that
$G$
is a connected graph. Since
$\mathcal{G}$
is not isomorphic to
${\mathcal{E}}(n,k,s)$
, we infer that
${\mathcal{G}}(s\overline{(s+1)})\neq \emptyset$
and
${\mathcal{G}}(\overline{s}(s+1))\neq \emptyset$
. Then there exists an edge
$(E_1,E_2)$
in
$G$
such that
$E_1\cup \{s\}\in{\mathcal{G}}$
and
$E_2\cup \{s+1\}\in{\mathcal{G}}$
. Let
$F\;:\!=\;E_1\cup E_2\in \binom{[n]\setminus \{s,s+1\}}{k}$
. Then
$F\cup \{s+1\}\notin{\mathcal{K}}({\mathcal{G}})$
and
$F\cup \{s\}\notin{\mathcal{K}}({\mathcal{G}})$
. But
$S_{s,s+1}({\mathcal{G}})={\mathcal{E}}(n,k,s)$
implies
$F\cup \{s\} \in{\mathcal{K}}(S_{s,s+1}({\mathcal{G}}))$
. Moreover, for any
$K\in{\mathcal{K}}({\mathcal{G}})\setminus{\mathcal{K}}(S_{s,s+1}({\mathcal{G}}))$
, we have
$(K\setminus \{s+1\})\cup \{s\}\in{\mathcal{K}}(S_{s,s+1}({\mathcal{G}}))\setminus{\mathcal{K}}({\mathcal{G}})$
by the injective map defined in Proposition 3.3. Hence
$|{\mathcal{K}}(S_{s,s+1}({\mathcal{G}}))|\gt |{\mathcal{K}}({\mathcal{G}})|\geq |{\mathcal{K}}({\mathcal{F}})|=|{\mathcal{K}}({\mathcal{E}}(n,k,s))|$
, a contradiction. Thus up to isomorphism
${\mathcal{E}}(n,k,s)$
is the only family attaining equality.
4. The maximum size of an
$r$
-complete intersecting family
In this section, we determine
$f(n,k,r)$
for all
$k,r\geq 3$
and
$n\geq n_0(k,r)$
, thereby proving Theorem 1.5.
Proposition 4.1.
For
$r\geq k+1$
,
$f(n,k,r)=0$
. For
$n\geq 2k-1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU28.png?pub-status=live)
Moreover, the unique family satisfying the condition is
$\binom{X}{k}$
with
$|X|=2k-1$
.
Proof. Suppose that
$\mathcal{F}$
is an intersecting
$k$
-graph and each
$F\in{\mathcal{F}}$
is
$k$
-wise covered. Consider the bipartite graph with partite sets
$\mathcal{F}$
,
$\partial{\mathcal{F}}$
and an edge between
$F$
and
$G$
iff
$G\subset F$
. It is clear that each
$F\in{\mathcal{F}}$
has degree
$k$
. On the other hand, the condition implies that each
$G\in \partial{\mathcal{F}}$
has degree at least
$k$
. Consequently,
$|{\mathcal{F}}|\geq |\partial{\mathcal{F}}|$
. In view of (7), we see
$|{\mathcal{F}}|= |\partial{\mathcal{F}}|$
and equality holds iff
${\mathcal{F}}=\binom{X}{k}$
with
$|X|=2k-1$
. The same argument implies
$f(n,k,r)=0$
for
$r\geq k+1$
.
We need a notion of basis for an intersecting family inspired by [Reference Frankl6]. For any intersecting family
${\mathcal{F}}\subset \binom{[n]}{k}$
, we define a basis
${\mathcal{B}}({\mathcal{F}})$
which is not necessarily unique by the following process. We start with
${\mathcal{F}}^0={\mathcal{F}}$
. Note that
${\mathcal{F}}^0$
is an antichain. A collection of sets
$F_0,\ldots,F_k$
is called a sunflower of size
$k+1$
with centre
$C$
if
$F_i\cap F_j=C$
for all distinct
$i,j\in \{0,1,\ldots,k\}$
. Note that in this case
$F_0\setminus C,\ldots,F_k\setminus C$
are pairwise disjoint. At the
$i$
-th step try and find in the current family
${\mathcal{F}}^i$
a sunflower
$F_0,\ldots,F_k$
of size
$k+1$
(the size of
$F_j$
may be distinct). Let
$C_i$
be the centre of the sunflower. Then let
${\mathcal{F}}^{i+1}$
be the family obtained from
${\mathcal{F}}^i$
by deleting all sets containing
$C_i$
and adding
$C_i$
. Clearly
${\mathcal{F}}^{i+1}$
is also an antichain.
Claim 3.
If
${\mathcal{F}}^i$
is intersecting, then
${\mathcal{F}}^{i+1}$
is also intersecting.
Proof. Take an arbitrary set
$F$
from
${\mathcal{F}}^{i}$
. Since
$|F|\leq k$
, we have
$F\cap (F_j\setminus C_i)=\emptyset$
for some
$j$
,
$0\leq j\leq k$
. Then
$F\cap C_i=F\cap F_j\neq \emptyset$
.
Continue this process until no more sunflowers of size
$k+1$
can be formed. Let
${\mathcal{B}}({\mathcal{F}})$
be the final family. Clearly,
${\mathcal{B}}({\mathcal{F}})$
is an antichain and for all
$F\in{\mathcal{F}}$
there exists
$B\in{\mathcal{B}}({\mathcal{F}})$
with
$B\subset F$
. By Claim 3,
${\mathcal{B}}({\mathcal{F}})$
is intersecting. In view of the Erdős-Rado sunflower lemma [Reference Erdős and Rado4],
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn21.png?pub-status=live)
Proof of Theorem
1.5. By proposition 4.1, we may assume
$3\leq r\leq k$
. Let
$\mathcal{F}$
be an
$r$
-complete intersecting family of maximal size and let
${\mathcal{B}}={\mathcal{B}}({\mathcal{F}})$
be its basis. Let
$X=\mathop{\cup }\limits _{B\in{\mathcal{B}}} B$
. By (21) we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU29.png?pub-status=live)
By the definition of
$\mathcal{B}$
, for any
$F\in{\mathcal{F}}$
there exists
$B\in{\mathcal{B}}$
such that
$B\subset F$
. Then for
$F,F'\in{\mathcal{F}}$
, there exist
$B,B'\in{\mathcal{B}}$
such that
$B\subset F$
and
$B'\subset F'$
. Since
$\mathcal{B}$
is intersecting,
$\emptyset \neq B\cap B'\subset F\cap F'\cap X$
. Thus, for all
$F,F'\in{\mathcal{F}}$
,
$F\cap F'\cap X \neq \emptyset$
.
Let us define
$p=\min \left \{|F\cap X|\colon F\in{\mathcal{F}}\right \}$
and choose an arbitrary pair
$(F,P_0)$
,
$P_0\in \binom{X}{p}$
,
$F\cap X=P_0$
. Set
$H=F\setminus P_0$
and define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU30.png?pub-status=live)
Note that
$P_0\in{\mathcal{P}}(H)$
.
Claim 4.
${\mathcal{P}}(H)$
is intersecting and
$r$
-complete.
Proof. For
$P,P'\in{\mathcal{P}}(H)$
fix
$B,B'\in{\mathcal{B}}({\mathcal{F}})$
satisfying
$B\subset H\cup P, B'\subset H\cup P'$
. Since
$H\cap X=\emptyset$
,
$B\subset P$
and
$B'\subset P'$
. Consequently,
$P\cap P'\supset B\cap B'\neq \emptyset$
.
Let us prove the
$r$
-completeness of
${\mathcal{P}}(H)$
next. Fix
$P\in{\mathcal{P}}(H)$
and
$R\in \binom{P}{p-1}$
. Using the
$r$
-completeness of
$\mathcal{F}$
there are
$r$
distinct elements
$x_1,x_2,\ldots,x_r$
such that
$(H\cup R\cup \{x_i\})\in{\mathcal{F}}$
. The minimal choice of
$p$
implies
$|(H\cup R\cup \{x_i\})\cap X|\geq p$
, whence
$x_i\in X$
,
$1\leq i\leq r$
. Thus
$R\cup \{x_i\}\in{\mathcal{P}}(H)$
, proving the
$r$
-completeness of
${\mathcal{P}}(H)$
.
If
$p\lt r$
, by Claim 4 and Proposition 4.1 we have
$1\leq |{\mathcal{P}}(H)|\leq f(|X|,p,r)=0$
, a contradiction. Thus
$p\geq r$
. Define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU31.png?pub-status=live)
Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU32.png?pub-status=live)
If
$p\geq r+1$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU33.png?pub-status=live)
Thus we assume
$p=r$
.
If
$|{\mathcal{P}}(H)|\leq \binom{2r-1}{r}-1$
holds for all
$H\in \binom{[n]\setminus X}{k-r}$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU34.png?pub-status=live)
Assume now that for some
$H\in \binom{[n]\setminus X}{k-r}$
,
$|{\mathcal{P}}(H)|=\binom{2r-1}{r}$
. By Proposition 4.1 we may assume that
${\mathcal{P}}(H)=\binom{Y}{r}$
,
$Y\in \binom{X}{2r-1}$
. We claim that
$|F\cap Y|\geq r$
for all
$F\in{\mathcal{F}}$
. Indeed the opposite would mean that
$F\cap P=\emptyset$
for some
$P\in \binom{Y}{r}$
. Then
$F\cap (H\cup P)\cap X=F\cap P=\emptyset$
, a contradiction. Consequently
${\mathcal{F}}\subset \{F\in \binom{[n]}{k}\colon |F\cap Y|\geq r\}$
, i.e.,
$\mathcal{F}$
is contained in an isomorphic copy of
${\mathcal{L}}(n,k,r)$
.
5. Maximizing the number of
$r$
-complete sets in an intersecting family
In this section, we prove Theorem 1.8 for
$3\leq r\lt k$
and
$n\geq n_0(k,r)$
. We need a different notion of basis. For a saturated intersecting family
$\mathcal{F}$
, define
${\mathcal{B}}({\mathcal{F}})$
be the family of minimal (for containment) sets in
${\mathcal{T}}({\mathcal{F}})$
. Define
$X=\mathop{\cup }\limits _{B\in{\mathcal{B}}} B$
the support of
$\mathcal{B}$
. The following properties of
${\mathcal{B}}({\mathcal{F}})$
were proved in [Reference Frankl, Kupavskii and Kiselev10].
Lemma 5.1 ([Reference Frankl, Kupavskii and Kiselev10]). Suppose that
${\mathcal{F}}\subset \binom{[n]}{k}$
is a saturated intersecting family and
${\mathcal{B}}={\mathcal{B}}({\mathcal{F}})$
. Then
-
(i)
$\mathcal{B}$ is an intersecting antichain,
-
(ii)
${\mathcal{F}}=\{H\in \binom{[n]}{k}\colon \exists B\in{\mathcal{B}}, B\subset H\}$ ,
-
(iii) for all
$F,F'\in{\mathcal{F}}$ ,
(22)\begin{align} F\cap F'\cap X\neq \emptyset . \end{align}
The following lemma is essentially proved in [Reference Frankl, Kupavskii and Kiselev10]. For self-containedness we include its proof as well.
Lemma 5.2 ([Reference Frankl, Kupavskii and Kiselev10]). Suppose that
${\mathcal{F}}\subset \binom{[n]}{k}$
is a saturated intersecting family. Then
$|{\mathcal{B}}({\mathcal{F}})|\leq k^k$
.
Proof. Let
${\mathcal{B}}={\mathcal{B}}({\mathcal{F}})$
. For the proof we use a branching process. During the proof a sequence
$S=(x_1,x_2,\ldots,x_\ell )$
is an ordered sequence of distinct elements of
$[n]$
and we use
$\widehat{S}$
to denote the underlying unordered set
$\{x_1,x_2,\ldots,x_\ell \}$
. At the beginning, we assign weight 1 to the empty sequence
$S_{\emptyset }$
. At the first stage, we choose
$B_1\in{\mathcal{B}}$
with
$|B_1|$
minimal. For any vertex
$x\in B_1$
, define one sequence
$(x)$
and assign the weight
$|B_1|^{-1}$
to it.
In each subsequent stage, we pick a sequence
$S=(x_1,\ldots,x_p)$
and denote its weight by
$w(S)$
. If
$\widehat{S}\cap B\neq \emptyset$
holds for all
$B\in{\mathcal{B}}$
then we do nothing. Otherwise we pick
$B\in{\mathcal{B}}$
satisfying
$\widehat{S}\cap B= \emptyset$
and replace
$S$
by the
$|B|$
sequences
$(x_1,\ldots,x_p,y)$
with
$y\in B$
and assign weight
$\frac{w(S)}{|B|}$
to each of them. Clearly, the total weight is always 1.
We continue until
$\widehat{S}\cap B\neq \emptyset$
for all sequences
$S$
and all
$B\in{\mathcal{B}}$
. Since
$[n]$
is finite, each sequence has length at most
$n$
and eventually the process stops. Let
$\mathcal{S}$
be the collection of sequences that survived in the end of the branching process and let
${\mathcal{S}}^{(\ell )}$
be the collection of sequences in
$\mathcal{S}$
with length
$\ell$
.
Claim 5.
For each
$B\in{\mathcal{B}}^{(\ell )}$
, there is some sequence
$S\in{\mathcal{S}}^{(\ell )}$
with
$\widehat{S}=B$
.
Proof. Let us suppose the contrary and let
$S=(x_1,\ldots,x_p)$
be a sequence of maximal length that occurred at some stage of the branching process satisfying
$\widehat{S}\subsetneqq B$
. Since
$\mathcal{B}$
are intersecting,
$B_{1}\cap B\neq \emptyset$
, implying that
$p\geq 1$
. Since
$\widehat{S}$
is a proper subset of
$B$
and
$B\in{\mathcal{B}}$
, it follows that
$\widehat{S}\notin{\mathcal{T}}({\mathcal{F}})$
. Thereby there exists
$F\in{\mathcal{F}}$
with
$\widehat{S} \cap F= \emptyset$
. In view of Lemma 5.1 (ii), we can find
$B'\in{\mathcal{B}}$
such that
$\widehat{S} \cap B'= \emptyset$
. Thus at some point we picked
$S$
and some
$\tilde{B}\in{\mathcal{B}}$
with
$\widehat{S} \cap \tilde{B}= \emptyset$
. Since
$\mathcal{B}$
is intersecting,
$B\cap \tilde{B}\neq \emptyset$
. Consequently, for each
$y\in B\cap \tilde{B}$
the sequence
$(x_1,\ldots,x_p,y)$
occurred in the branching process. This contradicts the maximality of
$p$
. Hence there is an
$S$
at some stage satisfying
$\widehat{S}= B$
. Since
$\mathcal{B}$
is intersecting,
$\widehat{S}\cap B'=B\cap B'\neq \emptyset$
for all
$B'\in{\mathcal{B}}$
. Thus
$\widehat{S}\in{\mathcal{S}}$
and the claim holds.
By Claim 5, we see that
$|{\mathcal{B}}^{(\ell )}|\leq |{\mathcal{S}}^{(\ell )}|$
for all
$\ell \geq 1$
. Let
$S=(x_1,\ldots,x_\ell )\in{\mathcal{S}}^{(\ell )}$
and let
$S_i=(x_1,\ldots,x_i)$
for
$i=1,\ldots,\ell$
. At the first stage,
$w(S_1)=1/|B_1|$
. Assume that
$B_{i}$
is the selected set when replacing
$S_{i-1}$
in the branching process for
$i=2,\ldots,\ell$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU35.png?pub-status=live)
It follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU36.png?pub-status=live)
Thus
$|{\mathcal{B}}|=\sum \limits _{1\leq \ell \leq k}|{\mathcal{B}}^{(\ell )}| \leq k^k$
.
Proposition 5.3.
If
$\partial{\mathcal{F}}$
is intersecting, then
$\mathcal{F}$
is 3-intersecting.
Proof. Suppose that
$|F\cap F'|\leq 2$
and
$F,F'\in{\mathcal{F}}$
. If
$F\cap F'=\{x,x'\}$
then
$F\setminus \{x\}, F'\setminus \{x'\}\in \partial{\mathcal{F}}$
and they are disjoint, a contradiction. The case
$F\cap F'=\{x\}$
is even easier.
Proposition 5.4.
Let
${\mathcal{F}}\subset \binom{[n]}{3}$
be a saturated intersecting family and let
${\mathcal{F}}^*$
be the family of
$r$
-complete sets in
$\mathcal{F}$
. For
$r=3$
,
$|{\mathcal{F}}^*|\leq \binom{5}{3}$
with equality holding iff
${\mathcal{F}}=\binom{[5]}{3}$
up to isomorphism. For
$r\geq 4$
,
$|{\mathcal{F}}^*|\leq 1$
with equality holding iff
${\mathcal{F}}={\mathcal{L}}(n,3,2)$
up to isomorphism.
Proof. Let
$r=3$
. Suppose that there exist two edges intersecting in one vertex, say
$(x_1,x_2,z), (y_1,y_2,z)\in{\mathcal{F}}^*$
, since
$(x_1,x_2)$
is 3-fold covered and
$\mathcal{F}$
is intersecting, we have
$(x_1,x_2,y_i)\in{\mathcal{F}}$
,
$i=1,2$
. Similarly,
$(y_1,y_2,x_i)\in{\mathcal{F}}$
,
$i=1,2$
. Since
$(x_1,x_2,y_2)\in{\mathcal{F}}$
and
$(z,y_1)$
is 3-fold covered,
$(z,y_1,x_1),(z,y_1,x_2)\in{\mathcal{F}}$
. Similarly,
$(z,y_2,x_1),(z,y_2,x_2)\in{\mathcal{F}}$
. Hence
$\{x_1,x_2,y_1,y_2,z\}$
spans a complete 3-graph in
$\mathcal{F}$
. Since
$\mathcal{F}$
is intersecting, we conclude that
${\mathcal{F}}=\binom{[5]}{3}$
up to isomorphism and
$|{\mathcal{F}}^*|=10$
. Suppose next that there are two edges intersecting in two vertices say
$(x,z_1,z_2),(y,z_1,z_2)\in{\mathcal{F}}^*$
, since
$(x,z_1),(y,z_2)$
are 3-fold covered and
$\mathcal{F}$
is intersecting, there exists
$w$
such that
$(x,z_1,y),(y,z_2,x),(x,z_1,w),(y,z_2,w)\in{\mathcal{F}}$
. Arguing with
$(x,z_2)$
and
$(y,z_1)$
, we infer that
$(x,z_2,y),(y,z_1,x),(x,z_2,w),(y,z_1,w)\in{\mathcal{F}}$
. Hence
$\{x,y,z_1,z_2,w\}$
spans a complete 3-graph in
$\mathcal{F}$
. Since
$\mathcal{F}$
is intersecting, we conclude that
${\mathcal{F}}=\binom{[5]}{3}$
up to isomorphism and
$|{\mathcal{F}}^*|=10$
. If
${\mathcal{F}}^*$
is 3-intersecting, then
$|{\mathcal{F}}^*|\leq 1$
holds trivially.
For
$r\geq 4$
, we claim that each member in
$\partial{{\mathcal{F}}^*}$
is a transversal of
$\mathcal{F}$
. Otherwise, let
$G\in \partial{{\mathcal{F}}^*}$
be a
$2$
-set that is not a transversal. Then there exists
$F\subset{\mathcal{F}}$
such that
$F\cap G=\emptyset$
. Since
$G\in \partial{\mathcal{F}}^*$
and
$r\geq 4\gt |F|$
, there exists
$x$
such that
$G\cup \{x\}\in{\mathcal{F}}$
and
$F\cap (G\cup \{x\})=\emptyset$
, a contradiction.
Thus
$\partial{{\mathcal{F}}^*}\subset{\mathcal{T}}({\mathcal{F}})$
. By Lemma 5.1 (i)
$\partial{{\mathcal{F}}^*}$
is intersecting. In view of Proposition 5.3,
${\mathcal{F}}^*$
is 3-intersecting. For
$n\geq 6$
, by Proposition 5.3 and (1) we have
$|{\mathcal{F}}^*|\leq \binom{n-3}{3-3}=1$
. In the case of equality, by symmetry we may assume that
${\mathcal{F}}^*=[3]$
.
Then we claim
$|F\cap [3]|\geq 2$
for all
$F\in{\mathcal{F}}$
. Indeed, otherwise
$|F\cap [3]|=1$
for some
$F\in{\mathcal{F}}$
, without loss of generality assume
$F\cap [3]=\{1\}$
, then we can find an
$F'\in{\mathcal{F}}$
disjoint to
$F$
since
$(2,3)$
is
$r$
-fold covered with
$r\geq 4\gt |F|$
, a contradiction. Thus
$|F\cap [3]|\geq 2$
for all
$F\in{\mathcal{F}}$
. Using that
$\mathcal{F}$
is saturated, we conclude that
${\mathcal{F}}={\mathcal{L}}(n,3,2)$
up to isomorphism. For
$n\leq 5$
, clearly
${\mathcal{F}}\subset \binom{[5]}{3}$
. Since no 2-set is contained in 4 or more 3-sets in
$\binom{[5]}{3}$
, we have
$|{\mathcal{F}}^*|=0$
.
The following proposition proves Theorem 1.8 for
$3\leq r\leq k-1$
and
$n\geq n_0(k,r)$
.
Proposition 5.5.
$f^*(n,k,r) =\binom{n-3}{k-3}+O(n^{k-r})$
for
$4\leq r\leq k-1$
and
$n\geq n_0(k,r)$
;
$f^*(n,k,3) =|{\mathcal{L}}(n,k,3)|$
for
$n\geq n_0(k)$
.
Proof. Let
${\mathcal{F}}\subset \binom{[n]}{k}$
be a saturated intersecting family and let
${\mathcal{F}}^*$
be the family of
$r$
-complete sets in
$\mathcal{F}$
. Let
${\mathcal{B}}={\mathcal{B}}({\mathcal{F}})$
and
$X=\mathop{\cup }\limits _{B\in{\mathcal{B}}} B$
. By Lemma 5.2, we have
$|X|\leq k\cdot k^k=k^{k+1}$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU37.png?pub-status=live)
If
$p\geq 4$
, then for
$n\geq n_0(k,r)$
we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU38.png?pub-status=live)
and we are done. If
$p=1$
, then there exists
$F^*\in{\mathcal{F}}^*$
such that
$F^*\cap X=\{x\}$
. It follows that
$\{x\}\in{\mathcal{B}}$
. By saturatedness we have
${\mathcal{F}}={\mathcal{S}}_x$
and
$|{\mathcal{F}}^*|=0$
. If
$p=2$
then for some
$F^*\in{\mathcal{F}}^*$
,
$F^*\cap X=\{x,y\}\in{\mathcal{B}}$
. Using
$r$
-completeness we find
$F_x\in{\mathcal{F}}$
,
$F_x\supset F^*\setminus \{y\}$
and
$F_y\in{\mathcal{F}}$
,
$F_y\supset F^*\setminus \{x\}$
and
$F_x\cap F_y\cap X=\emptyset$
, contradicting (22). Thus we may assume
$p=3$
.
Define the 3-graph
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU39.png?pub-status=live)
Note that
$p=3$
implies
${\mathcal{T}}\neq \emptyset$
. By (22) we infer that
$\mathcal{T}$
is intersecting. We distinguish two cases.
Case 1.
$r=3$
.
If there exist
$(x_1,y_1,z), (x_2,y_2,z)\in{\mathcal{T}}^*$
, let
$H_i\in \binom{[n]\setminus X}{k-3}$
such that
$H_i\cup \{x_i,y_i,z\}\in{\mathcal{F}}^*$
,
$i=1,2$
. By 3-completeness and (22), we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU40.png?pub-status=live)
Then there exists
$H_3\in \binom{[n]\setminus X}{k-3}$
such that
$H_3\cup \{x_1,y_1,x_2\}\in{\mathcal{F}}$
. Since
$H_2\cup \{y_2,z\}$
is covered by at least 3 members of
$\mathcal{F}$
, by (22) we infer
$H_2\cup (x_1,y_2,z),H_2\cup (y_1,y_2,z)\in{\mathcal{F}}$
. Similarly, we have
$H_2\cup (x_2,y_1,z),H_2\cup (x_1,x_2,z)\in{\mathcal{F}}$
. Hence
$\{x_1,x_2,y_1,y_2,z\}$
spans a complete 3-graph in
$\mathcal{T}$
. We claim that
$|F\cap \{x_1,x_2,y_1,y_2,z\}|\geq 3$
for all
$F\in{\mathcal{F}}$
. Indeed, otherwise suppose that there is
$F\in{\mathcal{F}}$
with
$|F\cap \{x_1,x_2,y_1,y_2,z\}|\leq 2$
. Without loss of generality assume that
$F\cap \{y_1,y_2,z\}=\emptyset$
. Since
$\{y_1,y_2,z\}\in{\mathcal{T}}$
, there exists
$H\in \binom{[n]\setminus X}{k-3}$
such that
$H\cup \{y_1,y_2,z\}=:F'\in{\mathcal{F}}$
. But then
$F\cap F'\cap X=\emptyset$
, contradicting (22). By saturatedness, we conclude that
${\mathcal{F}}={\mathcal{L}}(n,k,3)$
up to isomorphism and
$|{\mathcal{F}}^*|= |{\mathcal{L}}(n,k,3)|$
.
If there exist
$(x_1,y,z), (x_2,y,z)\in{\mathcal{T}}^*$
, let
$H_i\in \binom{[n]\setminus X}{k-3}$
such that
$H_i\cup \{x_i,y,z\}\in{\mathcal{F}}^*$
,
$i=1,2$
. Since
$H_1\cup \{x_1,y\},H_2\cup \{x_2,z\}$
are 3-fold covered, by (22) there exists
$w\in X$
such that
$H_1\cup \{x_1,y,x_2\},H_1\cup \{x_1,y,w\},H_2\cup \{x_2,z,x_1\},H_2\cup \{x_2,z,w\}\in{\mathcal{F}}$
. Similarly,
$H_1\cup \{x_1,z,x_2\},H_1\cup \{x_1,z,w\},H_2\cup \{x_2,y,x_1\},H_2\cup \{x_2,y,w\}\in{\mathcal{F}}$
. Then
$\{x_1,x_2,y,z,w\}$
spans a complete 3-graph in
$\mathcal{T}$
. By the same argument and saturatedness, we conclude that
${\mathcal{F}}={\mathcal{L}}(n,k,3)$
up to isomorphism and
$|{\mathcal{F}}^*|= |{\mathcal{L}}(n,k,3)|$
.
Now we may assume that
${\mathcal{T}}^*$
is 3-intersecting. Since
${\mathcal{T}}^*$
is a 3-graph, we trivially have
$|{\mathcal{T}}^*|\leq 1$
. Then for
$n\geq n_0(k)$
we obtain that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU41.png?pub-status=live)
Case 2.
$r\geq 4$
.
Claim 6.
For all
$F\in{\mathcal{F}}^*$
and
$T\in{\mathcal{T}}^*$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn23.png?pub-status=live)
Proof. Suppose the contrary. By symmetry let
$T=\{1,2,3\}$
,
$F\cap T=\{3\}$
(
$F\cap T\neq \emptyset$
by (22)). By
$r$
-completeness there are distinct elements
$y_1,\ldots,y_r$
such that
$(F\setminus \{3\})\cup \{y_i\}\in{\mathcal{F}}$
. Since
$r\geq 4$
, without loss of generality, assume
$y_r\notin \{1,2,3\}$
. Then
$((F\setminus \{3\})\cup \{y_r\})\cap T=\emptyset$
contradicting (22).
Claim 7.
$|{\mathcal{T}}^*|=1$
.
Proof. Otherwise using Claim 6, without loss of generality,
$\{1,2,3\},\{1,2,4\}\in{\mathcal{T}}^*$
. Let
$H_i\in \binom{[n]\setminus X}{k-3}$
such that
$H_i\cup \{1,2,i\}\in{\mathcal{F}}^*$
,
$i=3,4$
. Let
$x_1,\ldots,x_r$
be such that
$H_3\cup \{1,3,x_j\}\in{\mathcal{F}}$
,
$j=1,\ldots,r$
. Let
$y_1,\ldots,y_r$
be such that
$H_4\cup \{2,4,y_j\}\in{\mathcal{F}}$
,
$j=1,\ldots,r$
. By
$r\geq 4$
, without loss of generality assume
$x_1\notin \{2,4\}$
and
$y_1\notin \{1,3,x_1\}$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU42.png?pub-status=live)
contradicting (22).
By Claim 7, we may assume that
${\mathcal{T}}^*=\{(1,2,3)\}$
. Define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU43.png?pub-status=live)
Claim 8.
$F\in{\mathcal{F}}_i^*$
implies
$|F\cap X|\geq r$
,
$i=1,2,3$
.
Proof. By symmetry assume
$i=1$
and set
$S=F\cap X$
. Suppose indirectly
$|S|\lt r$
. Let
$\tilde{F}\in{\mathcal{F}}^*$
with
$\tilde{F}\cap X=[3]$
. By
$r$
-completeness there are
$x_1,x_2,\ldots,x_r$
distinct elements with
$(\tilde{F}\setminus \{3\})\cup \{x_j\}\in{\mathcal{F}}$
,
$1\leq j\leq r$
. Also
$F\setminus \{2\}$
is contained in
$r\gt 3$
members of
$\mathcal{F}$
. Let
$\hat{F}$
be one of them with
$\hat{F}\cap [3] = \{3\}$
and let
$\hat{S}= \hat{F}\cap X$
. Clearly,
$|\hat{S}|\leq |S|\lt r$
. Consequently we can choose
$x_j\notin \hat{S}$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU44.png?pub-status=live)
contradicting (22).
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU45.png?pub-status=live)
and the proposition is proven.
6. Maximizing the number of
$k$
-complete sets in an intersecting family
In this section, we prove Theorem 1.8 for
$r\geq k$
. By using Bollobás Set-pairs Inequality (Theorem 2.3) and the Hilton-Milner-Frankl Theorem, we determine
$f^*(n,k,k)$
for
$k\geq 5$
and
$n\geq n_0(k)$
. The cases
$r\geq k+1$
and
$r=k=4$
of Theorem 1.8 will be proved separately.
First we show that if an intersecting family contains a relatively
$k$
-complete sunflower of given shape, then Theorem 1.8 holds.
Lemma 6.1.
Let
${\mathcal{F}}\subset \binom{[n]}{k}$
be an intersecting family and let
${\mathcal{F}}^*$
be the family of
$k$
-complete sets in
$\mathcal{F}$
. If
${\mathcal{F}}^*$
contains a sunflower with
$k+1$
petals and centre
$C$
of size
$3$
and
$k\geq 4$
, then
$C\subset F$
for all
$F\in{\mathcal{F}}^*$
. In particular,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU46.png?pub-status=live)
Proof. Suppose that
$F_1,F_2,\ldots,F_{k+1}$
is a sunflower in
${\mathcal{F}}^*$
with centre
$[3]$
and let
$G_i=F_i\setminus [3]$
,
$i=1,\ldots,k+1$
.
If there exists
$F\in{\mathcal{F}}^*$
with
$|F\cap [3]|\leq 1$
, pick
$G\in \binom{F}{k-1}$
with
$G\cap [3]=\emptyset$
. Then
$G\cap F_i\neq \emptyset$
can hold for at most
$k-1$
values of
$i$
. Pick
$F_p,F_r$
disjoint to
$G$
. Now
$k$
-completeness and
$k\geq 4$
imply that we can choose
$z\notin [3]$
,
$G\cup \{z\}\in{\mathcal{F}}$
. Then either
$F_p$
or
$F_r$
is disjoint to
$G\cup \{z\}$
, a contradiction.
If there exists
$F\in{\mathcal{F}}^*$
with
$|F\cap [3]|= 2$
, without loss of generality, assume that
$F\cap [3]= \{1,2\}$
and let
$G=F\setminus \{1,2\}$
. Pick
$F_p,F_q,F_r$
disjoint to
$G$
. Since
$k\geq 4$
, we can choose
$z,w\notin [3]$
such that
$G\cup \{1,z\},G\cup \{1,w\}\in{\mathcal{F}}$
. Then one of
$F_p, F_q, F_r$
, without loss of generality say
$F_p$
, is disjoint to both
$G\cup \{z\}$
and
$G\cup \{w\}$
. Since
$F_p\setminus \{1\}$
is covered by at least
$k$
members of
$\mathcal{F}$
, we can find
$u\notin G\cup \{1\}$
such that
$(F_p\setminus \{1\})\cup \{u\}\in{\mathcal{F}}$
. Then either
$z\neq u$
or
$w\neq u$
holds. Without loss of generality, assume that
$z\neq u$
, then
$(F_p\setminus \{1\})\cup \{u\}$
and
$G\cup \{1,z\}$
are disjoint, a contradiction. Thus,
$[3]\subset F$
for all
$F\in{\mathcal{F}}^*$
and the lemma follows.
We prove Theorem 1.8 for
$r\geq k+1$
and
$k\geq 4$
by the following proposition.
Proposition 6.2.
$f^*(n,k,r) = \binom{n-3}{k-3}$
for
$r\geq k+1$
and
$n\geq \max \{4(k-2),k+r-1\}$
.
Proof. Let
${\mathcal{F}}\subset \binom{[n]}{k}$
be a saturated intersecting family. Let
${\mathcal{F}}^*$
be the family of
$r$
-complete sets in
$\mathcal{F}$
and let
${\mathcal{G}}=\partial{{\mathcal{F}}^*}$
. We claim that each member in
$\mathcal{G}$
is a transversal of
$\mathcal{F}$
. Otherwise, let
$G\in{\mathcal{G}}$
be a
$(k-1)$
-set that is not a transversal. Then there exists
$F\subset{\mathcal{F}}$
such that
$F\cap G=\emptyset$
. Since
$G\in \partial{\mathcal{F}}^*$
and
$r\gt |F|$
, there exists
$x$
such that
$G\cup \{x\}\in{\mathcal{F}}$
and
$F\cap (G\cup \{x\})=\emptyset$
, a contradiction. Thus
${\mathcal{G}}\subset{\mathcal{T}}({\mathcal{F}})$
.
Since
$\mathcal{F}$
is saturated, all
$k$
-element supersets of any
$G\in{\mathcal{T}}({\mathcal{F}})$
are members of
$\mathcal{F}$
. By Lemma 5.1 (i) we see that
$\mathcal{G}$
is intersecting. In view of Proposition 5.3,
${\mathcal{F}}^*$
is 3-intersecting. Since
$n\geq 4(k-2)$
, by (1) we have
$|{\mathcal{F}}^*|\leq \binom{n-3}{k-3}$
.
By using the Bollobás Set-pairs Theorem and the Hilton-Milner-Frankl Theorem, we prove Theorem 1.8 for
$r=k$
and
$k\geq 5$
.
Proposition 6.3.
$f^*(n,k,k) = \binom{n-3}{k-3}$
for
$r= k\geq 5$
and
$n\geq k^3\binom{2k-1}{k}$
.
Proof. Let
${\mathcal{F}}\subset \binom{[n]}{k}$
be a saturated intersecting family. Let
${\mathcal{F}}^*$
be the family of
$k$
-complete sets in
$\mathcal{F}$
and let
${\mathcal{G}}=\partial{{\mathcal{F}}^*}$
. Define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU47.png?pub-status=live)
Claim 9.
To every
$G\in{\mathcal{G}}'$
there is a unique
$k$
-element set
$H(G)\in{\mathcal{F}}$
which is disjoint to
$G$
.
Proof. Let
$G\cup \{x_i\}\in{\mathcal{F}}$
,
$i=1,\ldots,k$
, the existence of
$x_i$
is guaranteed by
$k$
-completeness. Since
$G\notin{\mathcal{T}}({\mathcal{F}})$
, there is
$F\in{\mathcal{F}}$
satisfying
$G\cap F=\emptyset$
. As
$\mathcal{F}$
is intersecting,
$F\cap (G\cup \{x_i\})=\{x_i\}$
for
$1\leq i\leq k$
. Using
$|F|=k$
,
$F=\{x_1,\ldots,x_k\}=:H(G)$
is the unique possibility.
From Claim 9 it is clear that
$H(G)\neq H(G')$
imply
$G\cap H(G')\neq \emptyset$
. Define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU48.png?pub-status=live)
Let
${\mathcal{H}}=\{H_1,\ldots,H_m\}$
. To each
$H_i\in{\mathcal{H}}$
, fix
$G_i\in{\mathcal{G}}'$
satisfying
$H(G_i)=H_i$
. Now
$H_i\cap G_j=\emptyset$
iff
$i=j$
, By (9), we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn24.png?pub-status=live)
For each
$H\in{\mathcal{H}}$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU49.png?pub-status=live)
Claim 10.
For each
$H\in{\mathcal{H}}$
,
${\mathcal{G}}'(H)$
is 2-intersecting.
Proof. Suppose that there exist
$G_1,G_2\in{\mathcal{G}}'(H)$
with
$G_1\cap G_2=\{x\}$
. Let
$H=\{x_1,\ldots,x_k\}$
. Since
$G_1\in \partial{\mathcal{F}}^*$
, there is
$F_1=G_1\cup \{x_i\}$
such that
$F_1\in{\mathcal{F}}^*$
. By symmetry we assume that
$i=1$
. By
$k$
-completeness, we have
$(F_1\setminus \{x\})\cup \{y_p\}\in{\mathcal{F}}$
for
$p=1,\ldots,k$
. Since
$|\{y_1,\ldots,y_k\}|\gt |G_2|$
, there exist
$y_{p_0}\notin G_2$
. Since
$k\geq 3$
, we may assume that
$x_2\neq y_{p_0}$
. Then
$G_1\cup \{x_1, y_{p_0}\}\setminus \{x\}$
,
$G_2\cup \{x_2\}$
are disjoint, a contradiction.
Now we distinguish two cases.
Case 1. There exists
$H\in{\mathcal{H}}$
such that
$|{\mathcal{G}}'(H)|\gt k(k-1)\binom{n-4}{k-4}$
.
Since
${\mathcal{G}}'(H)$
is a 2-intersecting
$(k-1)$
-graph, by (11)
${\mathcal{G}}'(H)$
is a 2-star. So let
${\mathcal{G}}'(H)$
be a star with centre
$\{1,2\}$
. Let
$H=\{x_1,\ldots,x_k\}$
. Define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU50.png?pub-status=live)
Note that
${\mathcal{G}}'(H)={\mathcal{G}}_1^H \cup \ldots \cup{\mathcal{G}}_k^H$
. Without loss of generality, we may assume that
$|{\mathcal{G}}_1^H| \geq \ldots \geq |{\mathcal{G}}_k^H|$
.
Claim 11.
${\mathcal{G}}_2^H = \cdots ={\mathcal{G}}_k^H=\emptyset$
.
Proof. Suppose for contradiction that
${\mathcal{G}}_2^H \neq \emptyset$
and let
$ R_2\in{\mathcal{G}}_2^H([2])$
. Since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU51.png?pub-status=live)
we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU52.png?pub-status=live)
By (10) we have
$\nu ({\mathcal{G}}_1^H([2])\cap \binom{[n]\setminus R_2}{k-3})\geq 2$
. It follows that there are
$R_0, R_1\in{\mathcal{G}}_1^H([2])$
such that
$R_0, R_1,R_2$
are pairwise disjoint sets. Set
$G_i=R_i\cup [2]$
for
$i=0,1,2$
. Since
$G_1\cup \{x_1\},\ G_2\cup \{x_2\}\in{\mathcal{F}}^*$
, we know that
$E_1=R_1\cup \{1,x_1\}$
,
$E_2=R_2\cup \{2,x_2\}$
are both covered by
$k$
members of
$\mathcal{F}$
. To avoid disjointness, we have
$E_1\cup \{y_2\}\in{\mathcal{F}}$
for each
$y_2\in E_2$
and
$E_2\cup \{y_1\}\in{\mathcal{F}}$
for each
$y_1\in E_1$
. Moreover, there is an extra element
$z$
such that
$E_1\cup \{z\},\ E_2\cup \{z\} \in{\mathcal{F}}$
.
Let
$E_0=R_0\cup \{1,x_1\}$
and clearly
$E_0\cap E_2=\emptyset$
. Since
$E_0\subset G_0\cup \{x_1\}\in{\mathcal{F}}^*$
,
$E_0$
is covered by
$k$
members of
$\mathcal{F}$
, we can find
$w\notin E_2$
such that
$E_0\cup \{w\}\in{\mathcal{F}}$
. For
$k\geq 5$
we may choose
$u\in R_1$
,
$u\neq w$
. Then
$E_2\cup \{u\}\in{\mathcal{F}}$
and
$E_0\cup \{w\},\ E_2\cup \{u\}$
are disjoint, a contradiction.
Claim 11 implies
${\mathcal{G}}'(H) ={\mathcal{G}}_1^H$
and
$G\cup \{x_1\}\in{\mathcal{F}}^*$
for all
$G\in{\mathcal{G}}'(H)$
. Then by Lemma 6.1 we may assume that
$\nu ({\mathcal{G}}_1^H([2]))\leq k$
. By (10),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU53.png?pub-status=live)
contradicting our assumption.
Case 2. For each
$H\in{\mathcal{H}}$
,
$|{\mathcal{G}}'(H)|\leq k(k-1)\binom{n-4}{k-4}$
.
By the definition of
$\mathcal{E}$
, we infer that each
$E$
in
$\mathcal{E}$
contains a
$(k-1)$
-set
$G\in{\mathcal{G}}'$
, implying
$|{\mathcal{E}}|\leq |{\mathcal{G}}'|$
. By Claim 9 and (24),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU54.png?pub-status=live)
Define
${\mathcal{F}}_1={\mathcal{F}}^*\setminus{\mathcal{E}}$
. Note that each member of
$\partial{\mathcal{F}}_1$
is a transversal of
$\mathcal{F}$
. Since
$\mathcal{F}$
is saturated, by Lemma 5.1 (i) the family
$\partial{\mathcal{F}}_1$
is intersecting. By Proposition 5.3,
${\mathcal{F}}_1$
is 3-intersecting. If
$|{\mathcal{F}}_1|\leq k\binom{n-4}{k-4}$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU55.png?pub-status=live)
Otherwise, by (11) we have
$[3]\subset F$
for all
$F\in{\mathcal{F}}_1$
. Then by Lemma 6.1, we may assume
$\nu ({\mathcal{F}}_1([3]))\leq k$
and (10) implies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU56.png?pub-status=live)
which contradicts the assumption and the proposition is proven.
Let
$g(\nu,\Delta )$
be the maximum number of edges in a graph
$\mathcal{G}$
with
$\nu ({\mathcal{G}})\leq \nu$
and the maximum degree at most
$\Delta$
. To determine
$f^*(n,4,4)$
, we need the following result due to Chvátal and Hanson [Reference Chvátal and Hanson2].
Lemma 6.4 ([Reference Chvátal and Hanson2]). For every
$\nu \geq 1$
and
$\Delta \geq 1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn25.png?pub-status=live)
Proposition 6.5.
$f^*(n,4,4)=n-3$
for
$n\geq 63$
.
Proof. Let
${\mathcal{F}}\subset \binom{[n]}{4}$
be a saturated intersecting family. Let
${\mathcal{F}}^*$
be the family of
$4$
-complete sets in
$\mathcal{F}$
.
Claim 12.
If there are
$F_1,F_2\in{\mathcal{F}}^*$
with
$|F_1\cap F_2|=1$
, then
$|{\mathcal{F}}^*|\leq 35$
.
Proof. Without loss of generality, assume that
$F_1=(x_1,x_2,x_3,z)$
and
$F_2=(y_1,y_2,y_3,z)$
. Using that
$(x_1,x_2,x_3)$
is 4-fold covered in
$\mathcal{F}$
which is intersecting, the only possible extra 4-sets are
$(x_1,x_2,x_3,y_i)\in{\mathcal{F}}$
,
$1\leq i\leq 3$
. Similarly for
$(y_1,y_2,y_3)$
we infer
$(y_1,y_2,y_3,x_j)\in{\mathcal{F}}$
,
$1\leq j\leq 3$
. Now consider
$(x_1,x_2,z)$
, it is disjoint to
$(y_1,y_2,y_3,x_3)$
. Hence its covering sets are
$(x_1,x_2,x_3,z)$
and
$(x_1,x_2,z,y_i)\in{\mathcal{F}}$
,
$1\leq i\leq 3$
. Arguing in the same way with
$(x_1,x_3,z),(x_2,x_3,z),(y_1,y_2,z)$
, etc, we infer that all sets
$R\in \binom{F_1\cup F_2}{4}$
with
$z\in R$
are in
$\mathcal{F}$
. If
${\mathcal{F}}\subset \binom{F_1\cup F_2}{4}$
then
$|{\mathcal{F}}^*|\leq |{\mathcal{F}}|\leq \binom{7}{4}=35$
, we are done. Otherwise we infer
$z\in F$
for all
$F\in{\mathcal{F}}\setminus \binom{F_1\cup F_2}{4}$
. Using
$F\cap (x_1,x_2,x_3,y_i)\neq \emptyset$
and
$F\cap (y_1,y_2,y_3,x_j)\neq \emptyset$
, we infer that such
$F$
are of form
$(x_j,y_i,z,w_t)$
with
$w_t$
in the outside of
$F_1\cup F_2$
. Now the intersecting property implies that
$(x_j,y_i,w_t)$
cannot be 4-fold covered by
$\mathcal{F}$
. Thus
$(x_j,y_i,z,w_t)\notin{\mathcal{F}}^*$
. Hence
$|{\mathcal{F}}^*|\leq \binom{7}{4}=35$
.
By Claim 12 and
$n\geq 38$
, we may assume that
${\mathcal{F}}^*$
is 2-intersecting.
Claim 13.
${\mathcal{F}}^*$
contains no sunflower with 3 petals and a centre of size 2.
Proof. Assume that
$(1,2,3,4), (1,2,5,6),(1,2,7,8)$
form such a sunflower in
${\mathcal{F}}^*$
. Since
$(2,3,4),(1,5,6)$
are 4-fold covered in
$\mathcal{F}$
, we may assume that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU57.png?pub-status=live)
The intersecting property of
$\mathcal{F}$
implies that (by symmetry)
$(a,b)=(5,6)$
,
$(p,q)=(3,4)$
,
$c=r$
. Since
$(1,7,8)$
is 4-fold covered in
$\mathcal{F}$
, let
$(1,7,8,u),(1,7,8,v),(1,7,8,w)\in{\mathcal{F}}$
. Then one of
$u,v,w$
is not in
$\{5,6\}$
, by symmetry assume
$w\notin \{5,6\}$
, it implies that
$(2,3,4,a),(1,7,8,w)$
are disjoint, a contradiction.
Let
$F\in{\mathcal{F}}^*$
. For any
$P\in \binom{F}{2}$
, define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU58.png?pub-status=live)
By Claim 13,
$\nu ({\mathcal{G}}(P))\leq 2$
. By Lemma 6.1, we may assume that
${\mathcal{F}}^*$
contains no sunflower with
$5$
petals and a centre of size
$3$
. It follows that the maximum degree of
${\mathcal{G}}(P)$
is at most 4. Then (25) implies
$|{\mathcal{G}}(P)|\leq 2*4+2=10$
. Since
${\mathcal{F}}^*$
is 2-intersecting, we conclude that for
$n\geq 63$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU59.png?pub-status=live)
and the proposition is proven.
Theorem 1.8 follows from Theorem 3.1 and Propositions 5.4, 5.5, 6.2, 6.3, 6.5.
7. Concluding remarks
In this paper we considered intersecting
$k$
-graphs
${\mathcal{F}}\subset \binom{[n]}{k}$
. For a positive parameter
$r$
we called an edge
$F\in{\mathcal{F}}$
$r$
-complete if all
$G\in \binom{F}{k-1}$
were contained in at least
$r$
members of
$\mathcal{F}$
, including
$F$
. For
$r=1$
this condition is automatically satisfied. For
$r\geq 2$
we defined
$f(n,k,r)$
as the maximum of
$|{\mathcal{F}}|$
for families with all edges being
$r$
-complete and
$f^*(n,k,r)$
as the maximum number of
$r$
-complete edges in
$\mathcal{F}$
. The inequality
$f(n,k,r)\leq f^*(n,k,r)$
is obvious. For
$2\leq r\leq k$
all edges of the family
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU60.png?pub-status=live)
are
$r$
-complete. We showed that for
$n\geq n_0(k,r)$
,
$f(n,k,r)=|{\mathcal{L}}(n,k,r)|$
and for
$r=2$
or 3 even
$f^*(n,k,r)$
shares this value. However, for
$r\geq 4$
,
$f^*(n,k,r)$
is much larger:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU61.png?pub-status=live)
In the case
$r=2$
we exploited some connections with the Erdős Matching Conjecture and succeeded in proving the statements with a linear constraint,
$n\geq 28k$
. However for
$r\geq 3$
our proof requires
$n_0(k,r)\gt k^{2(r+1)k}$
.
Problem 7.1.
Does
$f(n,k,r)=|{\mathcal{L}}(n,k,r)|$
hold for
$3\leq r\leq k$
and
$n\gt ck$
with an absolute constant
$c$
?
Another open problem is to determine the exact value of
$f^*(n,k,r)$
for
$4\leq r\leq k-1$
and
$n\gt n_0(k,r)$
.
As the analogous problems for
$t$
-intersecting families, we can define two more functions.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU62.png?pub-status=live)
Example 7.2. For
$n\geq k\geq t\geq 1$
and
$1\leq r\leq k-t+1$
define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqnU63.png?pub-status=live)
By essentially the same proof as in Sections 3 and 4, one can obtain the following two results:
Theorem 7.3.
For
$k\geq 3$
,
$r\geq 2$
and
$n\geq n_0(k,r)$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn26.png?pub-status=live)
Theorem 7.4.
For
$k\geq 3$
,
$r\geq 2$
and
$n\geq n_0(k,r)$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219151642083-0476:S0963548323000305:S0963548323000305_eqn27.png?pub-status=live)
Acknowledgement
We would like to thank the referees for their helpful comments and corrections.