Nevada has produced one-third million tons of montmorillonite clays; a major portion was natural adsorbent clay from the Ash Meadows district. Four properties, 3 with swelling and 1 with non-swelling montmorillonite, are currently producing.
Detailed geologic and laboratory studies were made of thirty Nevada montmorillonite deposits. Pyroclastic and other volcanic rocks, mainly Miocene and Pliocene in age, were the host for most of these. The montmorillonite deposits are believed to have been formed in four ways: (1) eleven deposits by alteration of volcanic ash shortly after it settled in lacustrine basins; (2) two deposits by deposition of fine-grained clastic materials; (3) eleven deposits by hydrothermal alteration of a variety of rock types near structural channelways; and (4) six deposits by partial leaching and alteration of glassy, rhyolitic volcanic rocks by ground water.
Montmorillonite is the predominant clay mineral in all the deposits except Ash Meadows, where saponite is present. Sodium is much more common as the exchangeable cation than calcium and/or magnesium. Kaolinite and illite are present in one-fifth of the samples; chlorite or mixed-layer material are rarely present. Quartz, cristobalite, feldspars, calcite, and gypsum are common impurities.
The tests performed on the clay samples were: color; texture; slaking reaction; percentage swelling in water; plastic viscosity, yield point and gel strength of clay-water slurry; colloid content; and pH. Some montmorillonites formed by incomplete alteration of pyroclastic rocks can be wet separated to yield a light-colored, — 2μ fraction with superior viscosity and thixotropy.