Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T21:18:38.191Z Has data issue: false hasContentIssue false

Montmorillonite Deposits in Nevada

Published online by Cambridge University Press:  01 July 2024

Keith G. Papke*
Affiliation:
Nevada Bureau of Mines, University of Nevada, Reno, Nevada 89107
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nevada has produced one-third million tons of montmorillonite clays; a major portion was natural adsorbent clay from the Ash Meadows district. Four properties, 3 with swelling and 1 with non-swelling montmorillonite, are currently producing.

Detailed geologic and laboratory studies were made of thirty Nevada montmorillonite deposits. Pyroclastic and other volcanic rocks, mainly Miocene and Pliocene in age, were the host for most of these. The montmorillonite deposits are believed to have been formed in four ways: (1) eleven deposits by alteration of volcanic ash shortly after it settled in lacustrine basins; (2) two deposits by deposition of fine-grained clastic materials; (3) eleven deposits by hydrothermal alteration of a variety of rock types near structural channelways; and (4) six deposits by partial leaching and alteration of glassy, rhyolitic volcanic rocks by ground water.

Montmorillonite is the predominant clay mineral in all the deposits except Ash Meadows, where saponite is present. Sodium is much more common as the exchangeable cation than calcium and/or magnesium. Kaolinite and illite are present in one-fifth of the samples; chlorite or mixed-layer material are rarely present. Quartz, cristobalite, feldspars, calcite, and gypsum are common impurities.

The tests performed on the clay samples were: color; texture; slaking reaction; percentage swelling in water; plastic viscosity, yield point and gel strength of clay-water slurry; colloid content; and pH. Some montmorillonites formed by incomplete alteration of pyroclastic rocks can be wet separated to yield a light-colored, — 2μ fraction with superior viscosity and thixotropy.

Резюме

Резюме

В шт. Невада добыто 1/3 миллиона тонн монтмориллонитовых глин; главная масса их предаставляет природный адсорбент и происходит из района Эш: Медоуз. В настоящее время на трех месторождениях добывается набухающий и на одном- ненабухающий монтмориллонит. Детальными геологическими и лабораторными исследованиями были охвачены тридцать месторождений монтмориллонита. В большинстве из них монтморил лонитовые глины залегают в пирокластических и других вулканических породах, преимущественно миоценовых и плиоценовых.

Различаются четыре пути образования монтмориллонитовых глин: 1. Изменение вулканической золы вскоре после ее осаждения в озерных бассейнах (одиннадцать место-рождений); 2. Отложение тонкого глинистого детрита (два месторождения); 3. Гидротермаль-ное изменение различных пород около структурных каналов (одиннадцать месторождений); 4. Изменение под действием грунтовых вод стекловатых риолитовых вулканических пород при ограниченном выносе оснований (шесть месторождений).

Преобладающим глинистым минералом всех месторождений является монтмориллонит; только в Эш Медоуз наблюдается сапонит. Натрий, как обменный катион, более обычен, чем кальций и (или) магний. Одна пятая часть образцов содержит каолинит и иллит; хлорит и смешаннослойные образования наблюдаются редко. К числу обычных примесей относятся кварц, кристобалит, полевые шпаты, кальцит и гипс.

Type
Research Article
Copyright
Copyright © 1969, The Clay Minerals Society

Footnotes

*

Publication authorized by the Director, Nevada Bureau of Mines.

References

Geological Society of America (1963) Rock-Color Chart: Geol. Soc. Am., New York.Google Scholar
Gibbons, A. V., Hinrichs, E. N. and Botinelly, Theodore (1960) The role of impermeable rocks in controlling zeolitic alteration of tuff: U.S. Geol. Surv. Prof. Paper 400B, B473475.Google Scholar
Grim, R. E. (1968) Clay Mineralogy, 2nd edn: McGraw-Hill, New York.Google Scholar
Keller, W. D. (1966) Geochemical weathering of rocks: source of raw materials for good living: J. Geol. Educ. 14, 1722.Google Scholar
Lamar, R. S. (1953) Adsorbent clays in California: Calif. J. Mines and Geol. 49, 297337.Google Scholar
MacEwan, D. M. C. (1949) Some notes on the recording and interpretation of X-ray diagrams of soil clays: J. Soil Sci. 1, 90103.CrossRefGoogle Scholar
MacEwan, D. M. C. (1961) Montmorillonite minerals in Brown (Editor) The X-ray Identification of Clay Minerals: Mineral. Soc., London, 143207.Google Scholar
Middleton, Jefferson (1921) Fuller's earth: U.S. Geol. Surv., Mineral Resources U.S., 1918, Part II, 135140.Google Scholar
Mielenz, R. S., Schieitz, N. S. and King, M. E. (1955) Effect of exchangeable cation on X-ray diffraction patterns and thermal behavior of a montmorillonite clay: Clays and Clay Minerals 3, 146173.Google Scholar
Nutting, P. G. (1943) Adsorbent clays: their distribution, properties, production, and use: U.S. Geol. Surv. Bull. 928-C.Google Scholar
Papke, K. G. (1969) Montmorillonite, bentonite, and fuller's earth deposits in Nevada: Nevada Bur. Mines Bull., In press.Google Scholar
Savins, J. G. and Roper, W. F. (1954) A direct-indicating viscometer for drilling fluids: Am. Petrol. Inst., Drilling and Production Practice 7, 722.Google Scholar