Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T19:00:23.908Z Has data issue: false hasContentIssue false

Water-Uptake Capacity of Bentonites

Published online by Cambridge University Press:  01 January 2024

S. Kaufhold*
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany
R. Dohrmann
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover, Germany
M. Klinkenberg
Affiliation:
IEF-6, Institut für Energieforschung Sicherheitsforschung und Reaktortechnik (IEF-6), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present study compares the water-vapor adsorption capacity of bentonites (natural cation population) with the Enslin-Neff method. Water-vapor adsorption at 50% r.h. (relative humidity) or 70% r.h. is known to depend heavily on the amount of permanent charge and on the type of exchangeable cation. At ~80% r.h. Na+- and Ca2+/Mg2+-dominated bentonites take up equal amounts of water. Comparing the water-uptake capacity at 80% r.h. with the cation exchange capacity (CEC) revealed a close correlation between these two variables. Appreciable scatter apparent from this plot, however, suggests that additional factors influence the water-uptake capacity.Water adsorption at external surfaces was considered to be one of these factors and was, in fact, implicated by N2-adsorption data. The ratio of external/internal water ranged from 0 to 1, which suggests that water-adsorption values cannot be applied in the calculation of the internal surface area without correction for external water.

The Enslin-Neff water-uptake capacity, on the other hand, is unaffected by microstructural features (e.g. specific surface area and porosity). The amount of exchangeable Na+ is themost important factor. However, the relationship between the Na+ content and the Enslin value is not linear but may be explained by percolation theory.

Type
Article
Copyright
Copyright © Clay Minerals Society 2010

References

Cases, J.M. Bérend, I. Francois, M. Uriot, J.P. Michot, L.J. and Thomas, F., 1997 Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms Clays and Clay Minerals 45 822 10.1346/CCMN.1997.0450102.CrossRefGoogle Scholar
Dieng, M.A., 2005 Der Wasseraufnahmeversuch nach DIN 18132 in einem neu entwickelten Gerät Bautechnik 82 2832 10.1002/bate.200590024.CrossRefGoogle Scholar
Dieng, M.A., 2006 Bestimmungsmethode der Konsistenzgrenzen mittels Wasseraufnahmeversuchen Bautechnik 83 492496 10.1002/bate.200610042.CrossRefGoogle Scholar
Dohrmann, R. and Kaufhold, S., 2009 Three new, quick CEC methods for determining the amounts of exchangeable calcium ions in calcareous clays Clays and Clay Minerals 57 338352 10.1346/CCMN.2009.0570306.CrossRefGoogle Scholar
Enslin, O., 1933 Über einen Apparat zur Messung der Flüssigkeitsaufnahme von quellbaren und porösen Stoffen und zur Charakterisierung der Benetzbarkeit Die chemische Fabrik 13 147148.Google Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. and Drits, V.A., 2005 Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonitehydration properties American Mineralogist 90 13581374 10.2138/am.2005.1776.CrossRefGoogle Scholar
Kaufhold, S., 2005 Influence of layer charge density on the determination of the internal surface area of montmorillonites Berichte der Deutschen Ton- und Tonmineralgruppe 11 2026.Google Scholar
Kaufhold, S., 2006 Comparison of methods for the determination of the layer charge density (LCD) of montmorillonites Applied Clay Science 34 1421 10.1016/j.clay.2006.02.006.CrossRefGoogle Scholar
Kaufhold, S. and Dohrmann, R., 2008a Detachment of colloidal particles from bentonites in water Applied Clay Science 39 5059 10.1016/j.clay.2007.04.008.CrossRefGoogle Scholar
Kaufhold, S. and Dohrmann, R., 2008b Comparison of the traditional Enslin-Neff method and the modified Dieng method for measuring water-uptake capacity Clays and Clay Minerals 56 686692 10.1346/CCMN.2008.0560609.CrossRefGoogle Scholar
Kaufhold, S. Dohrmann, R. Koch, D. and Houben, G., 2008 The pH of aqueous bentonite suspensions Clays and Clay Minerals 56 338343 10.1346/CCMN.2008.0560304.CrossRefGoogle Scholar
Kesten, H., 2006 What is percolation? Notices of the AMS 53 572573.Google Scholar
Klinkenberg, M., 2008 Einfluss des Mikrogefüges auf ausgewählte petrophysikalische Eigenschaften von Tongesteinen und Bentoniten PhD thesis .Google Scholar
Klute, A. ed, 1986 Methods of Soil Analysis, Part 1, Physical and Methods 2nd edition Madison, Wisconsin, USA American Society of Agronomy and Soil Science Society of America.CrossRefGoogle Scholar
Laird, D.A., 1999 Layer charge influences on the hydration of exapandable 2:1 phyllosilicates Clays and Clay Minerals 47 630636 10.1346/CCMN.1999.0470509.CrossRefGoogle Scholar
Montes, H.G. Duplay, J. Martinez, L. and Mendoza, C., 2003 Swelling-shrinkage kinetics of MX80 bentonite Applied Clay Science 22 279293 10.1016/S0169-1317(03)00120-0.CrossRefGoogle Scholar
Neff, K.H., 1959 Über die Messung der Wasseraufnahme ungleichförmiger bindiger anorganischer Bodenarten in einer neuen Ausführung des Enslingerätes Die Bautechnik 39 415421.Google Scholar
Prost, R., 1975 Study of the hydration of clays: Water-mineral interactions and mechanism of water retention. II. Study of a smectite (hectorite) Annales Agronomiques 26 463.Google Scholar
Sposito, G. and Prost, R., 1982 Structure of water adsorbed on smectites Chemical Reviews 82 553572 10.1021/cr00052a001.CrossRefGoogle Scholar
Ufer, K. Stanjek, H. Roth, G. Dohrmann, R. Kleeberg, R. and Kaufhold, S., 2008 Quantitative phase analysis of bentonites by the Rietveld method Clays and Clay Minerals 56 272282 10.1346/CCMN.2008.0560210.CrossRefGoogle Scholar
Van der Gaast, S.J. Kuhnel, R.A. Vasterink, J. and Frost, R.L., 1997 A new model for the structure of water in the interlayer of Ca-Wyoming montmorillonite Clays for our Future 421427.Google Scholar
Yariv, S., 1992 The effect of tetrahedral substitution of Si by Al on the surface acidity of theo xygen plane of clay minerals International Reviews in Physical Chemistry 11 345375 10.1080/01442359209353275.CrossRefGoogle Scholar
Yariv, S. Michaelian, K.H., Yariv, S. and Cross, H., 2002 Structure and surface acidity of clay minerals Organo-Clay Complexes and Interactions New York, Basel Marcel Dekker 139.Google Scholar