Hostname: page-component-7b9c58cd5d-9klzr Total loading time: 0 Render date: 2025-03-14T13:59:51.772Z Has data issue: false hasContentIssue false

Understanding the sepiolite–indigo interaction and its effect on Maya blue pigment by alkali pre-treatment of sepiolite

Published online by Cambridge University Press:  14 March 2025

Li Li
Affiliation:
School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
Guanzheng Zhuang*
Affiliation:
School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
Yanfu Wei
Affiliation:
National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao, 999078, China
Mohammad Fahimizadeh
Affiliation:
School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
Peng Yuan
Affiliation:
School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
*
Corresponding author: Guanzheng Zhuang; Email: [email protected]

Abstract

Sepiolite is considered a suitable substrate for Maya blue pigment. However, the interaction between sepiolite and indigo dye has not been fully understood. Previous studies have demonstrated that pre-treatment of sepiolite by heating or acid was useful in identifying the sepiolite–indigo interaction. The purpose of the present study was to prepare a series of hybrid sepiolite–indigo pigments after modifying the sepiolite using various alkali treatments (NaOH), then to evaluate their properties with respect to color, chemical resistance, and photostability. Samples were characterized using reflectance spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy, and N2 adsorption-desorption. Under alkaline conditions, Si4+ and Mg2+ ions in sepiolite partially dissolved, disrupting the coordinated water associated with them. Mg2+ ions precipitated and blocked the structural channels of the sepiolite. The impact of the alkali treatment on the microporous structure and coordinated water of sepiolite significantly influenced the color properties and stability of the hybrid pigments. Proper alkaline treatment enhanced the greenish hue and chemical stability of the pigment, while severe treatments apparently compromised the structural integrity of the sepiolite, thus diminishing the quality of the hybrid pigment. Results from this study provide new insights into the color-causing and stabilizing mechanisms of sepiolite-based Maya blue pigment and also provide guidance for developing hybrid pigments based on clay minerals and organic dyes.

Type
Original Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akyuz, S., & Akyuz, T. (2010). Adsorption of 3- and 4-aminopyridine on loughlinite – an IR spectroscopic study. Vibrational Spectroscopy, 53, 136139.CrossRefGoogle Scholar
Akyuz, S., Akyuz, T., & Akalin, E. (2010). Adsorption of isoniazid onto sepiolite-palygorskite group of clays: an IR study. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 75, 13041307.CrossRefGoogle ScholarPubMed
Amat, A., Rosi, F., Miliani, C., Sgamellotti, A., & Fantacci, S. (2011). Theoretical and experimental investigation on the spectroscopic properties of indigo dye. Journal of Molecular Structure, 993, 4351.CrossRefGoogle Scholar
Bemardino, N.D., Constantino, V.R.L., & de Faria, D.L.A. (2018). Probing the indigo molecule in maya blue simulants with resonance Raman spectroscopy. Journal of Physical Chemistry C, 122, 1150511515.CrossRefGoogle Scholar
Bukas, V.J., Tsampodimou, M., Gionis, V., & Chryssikos, G.D. (2013). Synchronous ATR infrared and NIR-spectroscopy investigation of sepiolite upon drying. Vibrational Spectroscopy, 68, 5160.CrossRefGoogle Scholar
Caillerie, J.-B.d.E.d.l. & Fripiat, J.J. (1992). Al modified sepiolite as catalyst or catalyst support. Catalysis Today, 14, 125140.CrossRefGoogle Scholar
Caliandro, R., & Dooryhee, E. (2019). New hints on the Maya Blue formation process by PCA-assisted in situ XRPD/PDF and optical spectroscopy. Chemistry-A European Journal, 25, 210218.CrossRefGoogle ScholarPubMed
Casal, B., Merino, J., Serratosa, J.-M., & Ruiz-Hitzky, E. (2001). Sepiolite-based materials for the photo- and thermal-stabilization of pesticides. Applied Clay Science, 18, 245254.CrossRefGoogle Scholar
Cavalcanti, G.R.S., Souprayen, C., Guillermin, D., Rodrigues, F., Fonseca, M.G. & Jaber, M. (2022). Designing photochromatic pigments based on clay minerals and spiropyran. Dyes and Pigments, 204, 110358.CrossRefGoogle Scholar
Cecilia, J.A., Vilarrasa-García, E., Cavalcante, C.L.Jr., Azevedo, D.C.S., Franco, F., & Rodríguez-Castellón, E. (2018). Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 capture. Journal of Environmental Chemical Engineering, 6, 45734587.CrossRefGoogle Scholar
Chouikhi, N., Cecilia, J.A., Vilarrasa-García, E., Besghaier, S., Chlendi, M., Franco Duro, F.I., Rodriguez Castellon, E., & Bagane, M. (2019). CO2 adsorption of materials synthesized from clay minerals: a review. Minerals, 9, 514.CrossRefGoogle Scholar
Corma, A., García, H., Leyva, A., & Primo, A. (2003). Alkali-exchanged sepiolites containing palladium as bifunctional (basic sites and noble metal) catalysts for the Heck and Suzuki reactions. Applied Catalysis A: General, 257, 7783.CrossRefGoogle Scholar
de la Fuente, M.A., Juárez, M. de Rafael, D., Villamiel, M., & Olano, A. (1999). Isomerization of lactose catalyzed by alkaline-substituted sepiolites. Food Chemistry, 66, 301306.CrossRefGoogle Scholar
Doménech-Carbó, A., Holmwood, S., Di Turo, F., Montoya, N., Valle-Algarra, F.M., Edwards, H.G.M., & Doménech-Carbó, M.T. (2019). Composition and color of maya blue: reexamination of literature data based on the dehydroindigo model. Journal of Physical Chemistry C, 123, 770782.CrossRefGoogle Scholar
Doménech-Carbó, A., Valle-Algarra, F.M., Doménech-Carbó, M.T., Domine, M.E., Osete-Cortina, L., & Gimeno-Adelantado, J.V. (2013). Redox tuning and species distribution in Maya blue-type materials: a reassessment. ACS Applied Materials & Interfaces, 5, 81348145.CrossRefGoogle ScholarPubMed
Domènech, A., Doménech-Carbó, M.T., Sánchez del Río, M., Goberna-Ferrón, S., & Lima, E. (2009). Evidence of topological indigo/dehydroindigo isomers in Maya blue-like complexes prepared from palygorskite and sepiolite. Journal of Physical Chemistry C, 113, 1211812131.CrossRefGoogle Scholar
Esteban-Cubillo, A., Pina-Zapardiel, R., Moya, J.S., Barba, M.F., & Pecharromán, C. (2008). The role of magnesium on the stability of crystalline sepiolite structure. Journal of the European Ceramic Society, 28, 17631768.CrossRefGoogle Scholar
Fahey, J.J., Ross, M., & Axelrod, J.M. (1960). Loughlinite, a new hydrous sodium magnesium silicate. The American Mineralogist, 45, 270281.Google Scholar
Fernandes, F.M., Manjubala, I., & Ruiz-Hitzky, E. (2011). Gelatin renaturation and the interfacial role of fillers in bionanocomposites. Physical Chemistry Chemical Physics, 13, 49014910.CrossRefGoogle ScholarPubMed
Fitaroni, L.B., Venâncio, T., Tanaka, F.H., Gimenez, J.C.F., Costa, J.A.S., & Cruz, S.A. (2019). Organically modified sepiolite: thermal treatment and chemical and morphological properties. Applied Clay Science, 179, 105149CrossRefGoogle Scholar
Frost, R.L., Locos, O.B., Ruan, H., & Kloprogge, J.T. (2001). Near-infrared and mid-infrared spectroscopic study of speiolites and palygorskites. Vibrational Spectroscopy, 27, 113.CrossRefGoogle Scholar
Gettens, R.J. (1962). Maya blue: an unsolved problem in ancient pigments. Society for American Archaeology, 27, 557576.Google Scholar
Giulieri, F., Ovarlez, S., & Chaze, A.-M. (2012). Indigo/sepiolite nanohybrids: stability of natural pigments inspired by Maya blue. International Journal of Nanotechnology, 9, 605617.Google Scholar
Giustetto, R., Seenivasan, K., Bonino, F., Ricchiardi, G., Bordiga, S., Chierotti, M.R., & Gobetto, R. (2011a). Host/guest interactions in a sepiolite-based Maya blue pigment: a spectroscopic study. Journal of Physical Chemistry C, 115, 1676416776.CrossRefGoogle Scholar
Giustetto, R., Wahyudi, O., Corazzari, I., & Turci, F. (2011b). Chemical stability and dehydration behavior of a sepiolite/indigo Maya blue pigment. Applied Clay Science, 52, 4150.CrossRefGoogle Scholar
Gómez-Pozuelo, G., Sanz-Pérez, E.S., Arencibia, A., Pizarro, P., Sanz, R., & Serrano, D.P. (2019). CO2 adsorption on amine-functionalized clays. Microporous and Mesoporous Materials, 282, 3847.CrossRefGoogle Scholar
Grazia, C., Buti, D., Amat, A., Rosi, F., Romani, A., Domenici, D., Sgamellotti, A., & Miliani, C. (2020). Shades of blue: non-invasive spectroscopic investigations of Maya blue pigments. From laboratory mock-ups to mesoamerican codices. Heritage Science, 8, 120.CrossRefGoogle Scholar
Guggenheim, S., & Krekeler, M.P.S. (2011). The structures and microtextures of the palygorskite–sepiolite group minerals. Developments in Clay Science, 3, 332.CrossRefGoogle Scholar
Gunasekaran, S., Anbalagan, G., & Pandi, S. (2006). Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy, 37, 892899.CrossRefGoogle Scholar
Hubbard, B., Kuang, W., Moser, A., Facey, G.A., & Detellier, C. (2003). Structural study of Maya blue: textural, thermal and solid-state multinuclear magnetic resonance characterization of the palygorskite-indigo and sepiolite-indigo adducts. Clays and Clay Minerals, 51, 318326.CrossRefGoogle Scholar
Jeon, P.R., Choi, J., Yun, T.S., & Lee, C.-H. (2014). Sorption equilibrium and kinetics of CO2 on clay minerals from subcritical to supercritical conditions: CO2 sequestration at nanoscale interfaces. Chemical Engineering Journal, 255, 705715.CrossRefGoogle Scholar
Jozefaciuk, G., & Bowanko, G. (2002). Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals. Clays and Clay Minerals, 50, 771783.CrossRefGoogle Scholar
Kleber, R., Masschelein-Kleiner, L., & Thissen, J. (1967). Étude et identification du ‘bleu Maya’. Studies in Conservation, 12, 4156.Google Scholar
Lescano, L., Castillo, L., Marfil, S., Barbosa, S., & Maiza, P. (2014). Alternative methodologies for sepiolite defibering. Applied Clay Science, 95, 378382.CrossRefGoogle Scholar
Li, L., Zhuang, G., Li, M., Yuan, P., Deng, L., & Guo, H. (2022). Influence of indigo-hydroxyl interactions on the properties of sepiolite-based Maya blue pigment. Dyes and Pigments, 200, 110138.CrossRefGoogle Scholar
Li, L., Zhuang, G., & Yuan, P. (2023). Coordinated water stabilizes indigo-sepiolite hybrid pigments: evidence from acid modification. Applied Clay Science, 236, 106877.CrossRefGoogle Scholar
Littmann, E.R. (1982). Maya blue – further perspectives and the possible use of indigo as the colorant. Society for American Archaeology, 47, 404408.Google Scholar
Madejová, J., Gates, W.P., & Petit, S. (2017). IR spectra of clay minerals. Developments in Clay Science, 8, 107149.CrossRefGoogle Scholar
Manciu, F.S., Reza, L., Polette, L.A., Torres, B., & Chianelli, R.R. (2007). Raman and infrared studies of synthetic Maya pigments as a function of heating time and dye concentration. Journal of Raman Spectroscopy, 38, 11931198.CrossRefGoogle Scholar
Martinez-Ramirez, S., Puertas, F., & Blanco-Varela, M.T. (2018). Stability of sepiolite in neutral and alkaline media at room temperature. Clay Minerals, 31, 225232.CrossRefGoogle Scholar
McKeown, D.A., Post, J.E., & Etz, E.S. (2002). Vibrational analysis of palygorskite and sepiolite. Clays and Clay Minerals, 50, 667680.CrossRefGoogle Scholar
Mulders, J.J.P.A., & Oelkers, E.H. (2020). An experimental study of sepiolite dissolution rates and mechanisms at 25°C. Geochimica et Cosmochimica Acta, 270, 296312.CrossRefGoogle Scholar
Olszówka, J.E., Karcz, R., Bielańska, E., Kryściak-Czerwenka, J., Napruszewska, B.D., Sulikowski, B., Socha, R.P., Gaweł, A., Bahranowski, K., Olejniczak, Z., & Serwicka, E.M. (2018). New insight into the preferred valency of interlayer anions in hydrotalcite-like compounds: the effect of Mg/Al ratio. Applied Clay Science, 155, 8494.CrossRefGoogle Scholar
Ovarlez, S., Giulieri, F., Chaze, A.-M., Delamare, F., Raya, J., & Hirschinger, J. (2009). The incorporation of indigo molecules in sepiolite tunnels. Chemistry, 15, 1132611332.CrossRefGoogle ScholarPubMed
Ovarlez, S., Giulieri, F., Delamare, F., Sbirrazzuoli, N., & Chaze, A.-M. (2011). Indigo-sepiolite nanohybrids: temperature-dependent synthesis of two complexes and comparison with indigo-palygorskite systems. Microporous and Mesoporous Materials, 142, 371380.CrossRefGoogle Scholar
Preisinger, A. (1961). Sepiolite and related compounds: its stability and application. Clay and Clay Minerals, 10, 365371.Google Scholar
Ricci, M., Lofrumento, C., Becucci, M., & Castellucci, E.M. (2018). The Raman and SERS spectra of indigo and indigo-Ag2 complex: DFT calculation and comparison with experiment. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188, 141148.CrossRefGoogle ScholarPubMed
Rondão, R., Séixas de Melo, J.S., Bonifácio, V.D.B., & Melo, M.J. (2010). Dehydroindigo, the forgotten indigo and its contribution to the color of Maya Blue. Journal of Physical Chemistry A, 114, 16991708.CrossRefGoogle Scholar
Ruiz-Hitzky, E., Aranda, P., Álvarez, A., Santarén, J., & Esteban-Cubillo, A. (2011). Advanced materials and new applications of sepiolite and palygorskite. Developments in Clay Science, 3, 393452.CrossRefGoogle Scholar
Sánchez del Río, M., Martinetto, P., Dooryhée, E., Reyes-Valerio, C., & Suárez, M. (2006). Synthesis and acid resistance of maya blue pigment. Archaeometry, 48, 115130.CrossRefGoogle Scholar
Sánchez del Río, M., Boccaleri, E., Milanesio, M., Croce, G., van Beek, W., Tsiantos, C., Chyssikos, G.D., Gionis, V., Kacandes, G.H., Suárez, M., & García-Romero, E. (2009). A combined synchrotron powder diffraction and vibrational study of the thermal treatment of palygorskite–indigo to produce Maya blue. Journal of Materials Science, 44, 55245536.CrossRefGoogle Scholar
Sánchez del Río, M., Doménech, A., Doménech-Carbó, M.T., Vázquez de Agredos Pascual, M.L., Suárez, M., & García-Romero, E. (2011). The Maya blue pigment. In Developments in Palygorskite-Sepiolite Research, pp. 453481.CrossRefGoogle Scholar
Serna, C.J., & Vanscoyoc, G.E. (1979). Infrared study of sepiolite and palygorskite surfaces, pp. 197206. International Clay Conference 1978, organized by the Clay Minerals Group, Mineralogical Society, London, under the auspices of Association Internationale pour l’Etude des Argiles.CrossRefGoogle Scholar
Serratosa, J.M. (1979). Surface properties of fibrous clay minerals (palygorskite and sepiolite), pp. 99109. International Clay Conference 1978.CrossRefGoogle Scholar
Shepard, A.O. (1962). Maya blue: alternative hypotheses. American Antiquity, 27, 565566.CrossRefGoogle Scholar
Siriwardane, R.V., & Stevens, R.W. Jr (2009). Novel regenerable magnesium hydroxide sorbents for CO2 capture at warm gas temperatures. Industrial & Engineering Chemistry Research, 48, 23152341.CrossRefGoogle Scholar
Suárez, M., & García-Romero, E. (2011). Advances in the crystal chemistry of sepiolite and palygorskite. Developments in palygorskite-sepiolite research, pp. 3365.CrossRefGoogle Scholar
Suárez, M., & García-Romero, E. (2012). Variability of the surface properties of sepiolite. Applied Clay Science, 67–68, 7282.CrossRefGoogle Scholar
Szadkowski, B., Kuśmierek, M., Kozanecki, M., Nowakowska, J., Rogowski, J., Maniukiewicz, W., & Marzec, A. (2023). Ecological hybrid pigments with improved thermal, light, and chemical stability based on purpurin dye and different minerals for applications in polymer materials. Dyes and Pigments, 217, 111430.CrossRefGoogle Scholar
Taimur, S., & Yasin, T. (2017). Influence of the synthesis parameters on the properties of amidoxime grafted sepiolite nanocomposites. Applied Surface Science, 422, 239246.CrossRefGoogle Scholar
Tatsch, E., & Schrade, B. (1995). Near-infrared fourier transform Raman spectroscopy of indigoids. Journal of Raman Spectroscopy, 26, 467473.CrossRefGoogle Scholar
Tiemblo, P., García, N., Hoyos, M., Mejía, A., & de Francisco, R. (2015). Organic modification of hydroxylated nanoparticles: silica, sepiolite, and polysaccharides. Handbook of Nanoparticles, pp. 135.Google Scholar
Tilocca, A. & Fois, E. (2009). The color and stability of Maya blue: TDDFT calculations. Journal of Physical Chemistry C, 113, 86838687.CrossRefGoogle Scholar
Van Olphen, H. (1966). Maya blue: a clay-organic pigment? Science, 154, 645646.CrossRefGoogle Scholar
Vázquez de Ágredos Pascuala, M.L., Doménech Carbó, M.T., & Doménech Carbó, A. (2011). Characterization of Maya blue pigment in pre-classic and classic monumental architecture of the ancient pre-Columbian city of Calakmul (Campeche, Mexico). Journal of Cultural Heritage, 12, 140148.Google Scholar
Vicente-Rodríguez, M.A., Suarez, M., Bañares-Muñoz, M.A., & Lopez-Gonzalez, J. D. (1996). Comparative FT-IR study of the removal of octahedral cations and structural modifications during acid treatment of several silicates. Spectrochimica Acta Part A, 52, 16851694.CrossRefGoogle Scholar
Walczyk, A., Karcz, R., Kryściak-Czerwenka, J., Napruszewska, B.D., Duraczyńska, D., Michalik, A., Olejniczak, Z., Tomczyk, A., Klimek, A., Bahranowski, K., & Serwicka, E.M. (2020a). Influence of dry milling on phase transformation of sepiolite upon alkali activation: implications for textural, catalytic and sorptive properties. Materials, 13, 3936.CrossRefGoogle ScholarPubMed
Walczyk, A., Michalik, A., Napruszewska, B.D., Kryściak-Czerwenka, J., Karcz, R., Duraczyńska, D., Socha, R.P., Olejniczak, Z., Gaweł, A., Klimek, A., Wójcik-Bania, M., Bahranowski, K., & Serwicka, E.M. (2020b). New insight into the phase transformation of sepiolite upon alkali activation: impact on composition, structure, texture, and catalytic/sorptive properties. Applied Clay Science, 195, 105740.CrossRefGoogle Scholar
Wang, W., Wang, F., Kang, Y., & Wang, A. (2015). Enhanced adsorptive removal of methylene blue from aqueous solution by alkali-activated palygorskite. Water, Air, & Soil Pollution, 226, 83.CrossRefGoogle Scholar
Yacamán, M.J., Rendón, L., Arenas, J., & Serra Puche, M.C. (1996). Maya blue paint: an ancient nanostructured material. Science, 273, 223225.CrossRefGoogle Scholar
Yalçin, H., & Bozkaya, Ö. (2011) Sepiolite–palygorskite occurrences in Turkey. Developments in Palygorskite-Sepiolite Research, pp. 175200.CrossRefGoogle Scholar
Yamamoto, Y., & Koga, N. (2019). Thermal decomposition of Maya blue: extraction of indigo thermal decomposition steps from a multistep heterogeneous reaction using a kinetic deconvolution analysis. Molecules, 24, 2515.CrossRefGoogle ScholarPubMed
Yariv, S. (1986). Infrared evidence for the occurrence of Si-O groups with doublebond character in antigorite, sepiolite and palygorskite. Clay Minerals, 21, 925936.CrossRefGoogle Scholar
Zhou, F., Yan, C., Zhang, Y., Tan, J., Wang, H., Zhou, S., & Pu, S. (2016). Purification and defibering of a chinese sepiolite. Applied Clay Science, 124–125, 119126.CrossRefGoogle Scholar
Zhuang, G., Jaber, M., Rodrigues, F., Rigaud, B., Walter, P., & Zhang, Z. (2019). A new durable pigment with hydrophobic surface based on natural nanotubes and indigo: Interactions and stability. Journal of Colloid and Interface Science, 552, 204217.CrossRefGoogle ScholarPubMed
Zhuang, G., Li, L., Li, M., & Yuan, P. (2022). Influences of micropores and water molecules in the palygorskite structure on the color and stability of maya blue pigment. Microporous and Mesoporous Materials, 330, 111615.CrossRefGoogle Scholar
Zou, W. & Yeo, S.Y. (2024). New methods for the identification of malachite pigments with varying particle sizes used in ancient chinese murals by spectroscopic techniques. Dyes and Pigments, 226, 112111.CrossRefGoogle Scholar
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material
Download Li et al. supplementary material(File)
File 1.3 MB