Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T17:00:24.941Z Has data issue: false hasContentIssue false

Structural Transformations of Clay Minerals in Soils of a Climosequence in an Italian Alpine Environment

Published online by Cambridge University Press:  01 January 2024

Aldo Mirabella*
Affiliation:
Istituto Sperimentale per lo Studio e la Difesa del Suolo, Piazza D'Azeglio 30, 50121 Firenze, Italy
Markus Egli
Affiliation:
Department of Physical Geography, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clays of a soil sequence with five profiles in the Val Genova (northern Italy) along an elevation gradient with climate ranging from moderate to Alpine were investigated with XRD using several diagnostic treatments. Smectites developed in the surface horizons of podzolic soils either from chlorite through the removal of hydroxy interlayers or from mica, which weathers in a first step to regularly or irregularly interstratified clay minerals. Citrate treatment allowed the detection of low-charge expandable minerals in the Bhs or Bs horizons. Therefore, the reduction of the charge of 2:1 clay minerals occurred before the removal of hydroxy polymers by fulvic acids and low-weight organic acids. Due to the more intense podzolization process near the tree line, the d060 region showed a temporal evolution of trioctahedral to dioctahedral mineral structures in the well developed Podzols. The pedogenic smectites of the E or Bhs horizons generally included one or several populations with various charges. In most cases, smectite was a heterogeneous mixture of montmorillonite and interstratified beidellite-montmorillonite. A pure beidellite phase could not be detected. The soils near the tree line, where weathering processes were most intense, had two main components: one with a charge >0.75, representing vermiculite-like minerals, and the other with a charge near 0.25, representing smectite. The charges of the beidellitic component and montmorillonite were almost equal. The higher the weathering state of the investigated soils, the lower was the layer charge of smectites.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

References

April, R.H. Hluchy, M.M. and Newton, R.M., (1986) The nature of vermiculite in Adirondack soils and till Clays and Clay Minerals 34 549556 10.1346/CCMN.1986.0340508.Google Scholar
Barnhisel, R.I. Bertsch, P.M., Dixon, J.B. and Weed, S.B., (1989) Chlorites and hydroxy-interlayered vermiculite and smectite Minerals in Soil Environments 2nd Madison, Wisconsin Soil Science Society of America 729 788.Google Scholar
Baroni, C. and Carton, A., (1990) Variazioni oloceniche della Vedretta della Lobbia (gruppo dell’Adamello, Alpi Centrali) Geografia Fisica Dinamica Quaternaria 13 105 119.Google Scholar
Carnicelli, S. Mirabella, A. Cecchini, G. and Sanesi, G., (1997) Weathering of chlorite to a low-charge expandable mineral in a Spodosol on the Apennine mountains, Italy Clays and Clay Minerals 45 2841 10.1346/CCMN.1997.0450104.Google Scholar
Egli, M. Mirabella, A. and Fitze, P., (2001) Weathering and evolution of soils formed on granitic, glacial deposits: results from chronosequences of Swiss Alpine environments Catena 45 1947 10.1016/S0341-8162(01)00138-2.Google Scholar
Egli, M. Mirabella, A. and Fitze, P., (2001) Clay mineral formation in soils of two different chronosequences in the Swiss Alps Geoderma 104 145175 10.1016/S0016-7061(01)00079-9.Google Scholar
Egli, M. Mirabella, A. Sartori, G. and Fitze, P., (2003) Weathering rates as a function of climate: results from a climosequence of the Val Genova (Trentino, Italian Alps) Geoderma 111 99121 10.1016/S0016-7061(02)00256-2.Google Scholar
Fanning, D.S. Keramidas, V.Z. El-Desoky, M.A., Dixon, J.B. and Weed, S.B., (1989) Micas Minerals in Soil Environments 2nd Madison, Wisconsin Soil Science Society of America 551 634.Google Scholar
FAO-UNESCO (1990) Soil Map of the World — Revised Legend. Rome, Italy.Google Scholar
Gillot, F. Righi, D. and Elsass, F., (2000) Pedogenic smectites in Podzols from central Finland: an analytical electron microscopy study Clays and Clay Minerals 48 655664 10.1346/CCMN.2000.0480607.Google Scholar
Gillot, F. Righi, D. and Räisänen, M.L., (2001) Layer charge evaluation of expandable clays from a chronosequence of podzols in Finland using an alkylammonium method Clay Minerals 36 571584 10.1180/0009855013640010.Google Scholar
Greene-Kelly, R., (1953) The identification of montmorillonoids in clays Journal of Soil Science 4 233237 10.1111/j.1365-2389.1953.tb00657.x.Google Scholar
Karathanasis, A.D., (1988) Compositional and solubility relationships between aluminum-hydroxy interlayered soil-smectites and vermiculites Soil Science Society of America Journal 52 15001508 10.2136/sssaj1988.03615995005200050055x.Google Scholar
Keller, W., Wohlgemuth, T., Kuhn, N., Schütz, M. and Wildi, O. (1998) Waldgesellschaften der Schweiz auf floristischer Grundlage. Statistisch überarbeitete Fassung der ‘Waldgesellschaften und Waldstandorte der Schweiz’ von Heinz Elleneberg und Frank Klötzli (1972). Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft, Bd. 73, Birmensdorf, Germany.Google Scholar
Lagaly, G. and Mermut, A.R., (1994) Layer charge determination by alkylammonium ions Layer Charge Characteristics of 2:1 Silicate Clay Minerals Bloomington, Indiana The Clay Minerals Society 1 46.Google Scholar
Lanson, B., (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals Clays and Clay Minerals 45 132146 10.1346/CCMN.1997.0450202.Google Scholar
Lundström, U.S. van Breemen, N. and Bain, D.C., (2000) The podzolization process. A review Geoderma 94 91107 10.1016/S0016-7061(99)00036-1.Google Scholar
Lundström, U.S. van Breemen, N. Bain, D.C. van Hees, P.A.W. Giesler, R. Gustafsson, J.P. Ilvesniemi, H. Karltun, E. Melkerud, P.-A. Olsson, M. Riise, G. Wahlberg, O. Bergelin, A. Bishop, K. Finlay, R. Jongmans, A.G. Magnusson, T. Mannerkosky, H. Nordgren, A. Nyberg, L. Starr, M. and Tau Strand, L., (2000) Advances in understanding the podzolization process resulting from a multidisciplinary study of three coniferous forest soils in the Nordic Countries Geoderma 94 335353 10.1016/S0016-7061(99)00077-4.Google Scholar
Malcolm, R.L. Nettleton, W.D. and McCracken, R.J., (1969) Pedogenic formation of montmorillonite from a 2:1–2:2 intergrade clay mineral Clays and Clay Minerals 16 405414 10.1346/CCMN.1969.0160602.Google Scholar
McDaniel, P.A. Falen, A.L. Tice, K.R. Graham, R.C. and Fendorf, S.E., (1995) Beidellite in E horizons of northern Idaho Spodosols formed in volcanic ash Clays Clay Minerals 43 525532 10.1346/CCMN.1995.0430502.Google Scholar
Melkerud, P.-A. Bain, D.C. Jongmans, A.G. and Tarvainen, T., (2000) Chemical, mineralogical and morphological characterization of three podzols developed on glacial deposits in Northern Europe Geoderma 94 125148 10.1016/S0016-7061(99)00043-9.Google Scholar
Mirabella, A. and Sartori, G., (1998) The effect of climate on the mineralogical properties of soils from the Val Genova Valley (Trentino, Italy) Fresenius Environmental Bulletin 7 478 483.Google Scholar
Mirabella, A. Egli, M. Carnicelli, S. and Sartori, G., (2002) Influence of parent material on clay minerals formation in podzols of Trentino — Italy Clay Minerals 36 699707 10.1180/0009855023740071.Google Scholar
Moore, D.M. and Reynolds, R.C. Jr, (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals 2nd New York Oxford University Press.Google Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950 10.1180/claymin.1990.025.1.05.Google Scholar
Pedrotti, F., (1993) Saggio di carta delle vegetazione della Regione Trentino Alto Adige. Bolletino Associazione Italiana di Cartografia 87–89 149 154.Google Scholar
Petit, S. Caillaud, J. Righi, D. Madejová, J. Elsass, F. and Köster, H.M., (2002) Characterization and crystal chemistry of Fe-rich montmorillonite from Ölberg, Germany Clay Minerals 37 283297 10.1180/0009855023720034.Google Scholar
Righi, D. and Meunier, A., (1991) Characterization and genetic interpretation of clays in acid brown soil (Dystrochrept) developed in a granitic saprolite Clays and Clay Minerals 39 519530 10.1346/CCMN.1991.0390507.Google Scholar
Righi, D. Petit, S. and Bouchet, A., (1993) Characterization of hydroxy-interlayered vermiculite and illite-smectite interstratified minerals from the weathering of chlorite in a Cryorthod Clays and Clay Minerals 41 484495 10.1346/CCMN.1993.0410409.Google Scholar
Righi, D. Räisänen, M.L. and Gillot, F., (1997) Clay mineral transformations in podzolized tills in central Finland Clay Minerals 32 531544 10.1180/claymin.1997.032.4.04.Google Scholar
Righi, D. Huber, K. and Keller, C., (1999) Clay formation and podzol development from postglacial moraines in Switzerland Clay Minerals 34 319332 10.1180/000985599546253.Google Scholar
Ross, G.J. and Theng, B.K.G., (1980) The mineralogy of Spodosols Soils with Variable Charge Lower Hutt, NewZealand Soil Bureau, Department of Scientific and Industrial Research 127 143.Google Scholar
Ross, G.J. and Mortland, M.M., (1966) A soil beidellite Soil Science Society of America Proceedings 3 337343 10.2136/sssaj1966.03615995003000030013x.Google Scholar
Sartori, G. and Mancabelli, A. (2002) Atlante dei suoli del Parco Adamello-Brenta. Suoli e paesaggi. Parco Documenti, Strembo (Trento), in press.Google Scholar
Senkayi, A.L. Dixon, J.B. and Hossner, L.R., (1981) Transformation of chlorite to smectite through regularly interstratified intermediates Soil Science Society of America Journal 45 650656 10.2136/sssaj1981.03615995004500030043x.Google Scholar
Tamura, T., (1958) Identification of clay minerals from acid soils Journal of Soil Science 9 141147 10.1111/j.1365-2389.1958.tb01906.x.Google Scholar
Wilson, M.J., (1986) Mineral weathering processes in podzolic soils on granitic materials and their implications for surface water acidification Journal of the Geological Society, London 143 691697 10.1144/gsjgs.143.4.0691.Google Scholar