Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-29T04:31:48.587Z Has data issue: false hasContentIssue false

Stability of Parathion on Attapulgite as Affected by Structural and Hydration Changes

Published online by Cambridge University Press:  01 July 2024

Zev Gerstl
Affiliation:
Division of Soil Residues Chemistry, Institute of Soils and Water ARO, Volcani Center, P.O. Box 6, Bet Dagan, Israel
Bruno Yaron
Affiliation:
Division of Soil Residues Chemistry, Institute of Soils and Water ARO, Volcani Center, P.O. Box 6, Bet Dagan, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The structure and hydration status of attapulgite clay after heating at elevated temperatures and the stability of parathion on these clays was studied. Using infrared spectroscopy and scanning electron microscopy it was found that the bound water was lost in two steps, at 250° and 450° with the first step being largely reversible. At 650°C the structure began to dissolve releasing significant amounts of Mg, and a decrease in aggregate porosity was noted. At 850°C an amorphous phase was formed bearing little resemblance to the original attapulgite. Parathion was stable on all of the preheated clays when kept at 25°C for 190 days. The reactions of parathion on the preheated clays was studied at 110°C Hydrolysis of parathion was found to be minimal. Isomerization was the main reaction occurring on the Ca-attapulgite, whereas on an organo-clay no isomerization was observed. A mechanism for the isomerization reaction is proposed which entails a distortion of the phosphate moiety of the pesticide by the oxygen of the ligand water resulting in the conformational changes necessary for the isomerization to take place. On the organo-clay such a conformation was not possible; hence no isomerization occurred.

Резюме

Резюме

Исследовались структура и состояние гидратации аттапулгитовой глины после нагревания при повышенных температурах, а также стабилность паратиона на этих глинах. Путем инфракрасной спектроскопии и электронного сканирующего микроскопа было обнаружено, что связанная вода освбождалась в двух этапах, при температурах 250°С и 450°С, причем первый этап был преимущественно реверсивный. При 650°С структура начинала растворяться, освобождая значительное количество магния, а также наблюдалось уменьшение пористости аггрегатов. При 850°С формировалась аморфная фаза, которая только в небольшой степени напоминала исходный аттапульгит. Паратион был стабильный на всех предварительно нагретых глинах, если они содержались при температуре 25°С в течение 190 дней. Реакции паратиона на нагретых глинах были исследованы при температуре 110°С. Гидролиз паратиона был минимальный. Изомеризация являлясь главной реакцей для Са-аттапульгита, в то время, как она не наблюдалась для органоглины. Для реакции изомеризации предложен механизм, который определяет искажение фосфатовой половины пестицида кислородом аддендовой воды, результатом чего является изменение формы необходимые для изомеризации. Для органо-глины такая форма невозможна, и в этом случае изомеризация не происходит. [Е.С.]

Resümee

Resümee

Es wurde der Struktur- und Hydratationszustand von Attapulgit-Ton nach dem Erhitzen auf erhöhte Temperaturen sowie die Stabilität von Parathion an diesen Tonen untersucht. Die Untersuchungen mit Infrarotspektroskopie und Rasterelektronenmikroskopie zeigten, daß das gebundene Wasser in zwei Schritten, bei 250°C und 450°C abgegeben wurde, wobei der erste Schritt in hohem Maße reversibel war. Bei 650°C begann die Struktur sich zu verändern, indem sie beträchtliche Mengen an Magnesium vedor. Weiters wurde eine Abnahme der Aggregatporosität festgestellt. Bei 850°C wurde eine amorphe Substanz gebildet, die sehr wenig Ähnlichkeit mit dem ursprünglichen Attapulgit aufwies. Parathion war an allen vorerhitzten Tonen bei einer Temperatur von 25°C über 190 Tage stabil. Die Reaktion von Parathion an vorerhitzten Tonen wurde bei 110°C untersucht. Es zeigte sich, daß die Hydrolyse von Parathion minimal ist. Die wichtigste Reaktion, die bei Ca-Attapulgit festgestellt wurde, war eine Isomerisierung, während an einem Organo-Ton keine Isomerisierung beobachtet wurde. Es wird ein Mechanismus für die Isomerisierungsreaktion vorgeschlagen, der eine Deformation des Phosphatrestes des Pestizides dutch den Sauerstoff des ligandenwassers nach sich zieht, wodurch sich die Anderungen der Konformation ergeben, die für die Isomerisierung notwendig sind. An dem Organo-Ton war eine derartige Konformation nicht möglich, weshalb keine Isomerisierung auftrat. [U.W.]

Résumé

Résumé

On a étudié l’étata de la structure et d'hydration d'argile attapulgite après échauffement à de hautes temperatures, et la stabilité de parathion sur ces argiles. En utilisant la spectroscopie infra-rouge et la microscopie balaynte électronique on a trouvé que l'eau liée est perdue en deux étapes, à 250° et 450°C la première étape étant réversible. A 650°C la stucture a commencé à se dissoudre, relâchant des quantités significatives de Mg, et un amoindrissement de la porosité de l'aggrégat a été remarqué. A 850°C une phase amorphe a été formée, ressemblant peu à l'attapulgite d'origine. Le parathion êtait stable sur toutes les argiles pré-échauffées lorsqu'elles étalent gardées à 25° pendant 190 jours. Les réactions de parathion sur les argiles pré-échauffées ont été étudites à 110°. On a trouvé que l'hydrolise du parathion était minime. L'isomérisation était la réaction principale se passant sur l'attapulgite-Ca, alors que sur l'argile organique, aucune isomérisation n'a été observée. On propose un mécanisme pour la réaction d'isomérisation, mécanisme qui comprend la distortion de la moitié phosphate du pesticide par l'oxygène de l'eau liante, résultant en les changements conformationnels nácessaires pour que l'isomérsation se passe. Sur les argiles organiques, une telle conformation n’était pus possible; par conséquent, aucune isomérisation ne s'est passée. [D.J.]

Type
Research Article
Copyright
Copyright © 1981, The Clay Minerals Society

Footnotes

1

Contribution 240-E, 1980 series.

References

Fest, C. and Schmidt, K. J., (1973) The Chemistry of Organophosphorus Pesticides Berlin Springer Verlag.CrossRefGoogle Scholar
Gerstl, Z. (1979) Attapulgite-parathion interactions: PhD thesis, Hebrew University of Jerusalem, 103 pp.Google Scholar
Gerstl, Z. and Yaron, B., (1978) Adsorption and desorption of parathion from attapulgite as affected by the mineral structure J. Agri. Food Chem. 26 569573.CrossRefGoogle Scholar
Grim, R. E., (1968) Clay Mineralogy 2nd New York McGraw-Hill.Google Scholar
Hayashi, H. Otsuka, R. and Imai, N., (1969) Infrared study of sepiolite and palygorskite on heating Amer. Mineral. 53 16131624.Google Scholar
Henin, S. Caillere, S. and Gieseking, J. E., (1975) Fibrous minerals Soil Components New York Springer Verlag 335349.CrossRefGoogle Scholar
Joiner, R. L. Chambers, H. W. and Baetcke, K. P., (1973) Comparative inhibition of boll weevil, golden shiner and white rat cholinesterases by selected photoalteration products of parathion Pestic. Biochem. Physiol. 2 371376.Google Scholar
Lawrie, D. C., (1961) A rapid method for the determination of approximate surface area of clays Soil Sci. 92 188191.CrossRefGoogle Scholar
Longchambon, H., (1937) X-ray diagram C. R. Acad. Sci. Paris 204 5558.Google Scholar
Mehra, O. P. and Jackson, M. L., (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays & Clay Minerals 7 317327.Google Scholar
Melnikov, N. N., (1971) Chemistry of Pesticides New York Springer Verlag.CrossRefGoogle ScholarPubMed
Mendelovici, E., (1973) Infrared study of attapulgite and HCl treated attapulgite Clays & Clay Minerals 21 115119.CrossRefGoogle Scholar
Mifsud, A. Rautureau, M. and Fornes, V., (1978) Etude de l’eau dans la palygorskite à l’aide des analyses thermiques Clay Miner. 13 367379.CrossRefGoogle Scholar
Miller, J. G. Haden, W. L. Jr. and Oulton, T. P., (1963) Oxidizing power of the surface of attapulgite clay Clays & Clay Minerals 12 381395.Google Scholar
Mingelgrin, U. Gerstl, Z. and Yaron, B., (1975) Pirimiphos ethyl-clay surface interactions Soil Sci. Soc. Amer. Proc. 39 834837.CrossRefGoogle Scholar
Mingelgrin, U. and Saltzman, S., (1979) Surface reactions of parathion on clays Clays & Clay Minerals 27 7276.CrossRefGoogle Scholar
Mingelgrin, U. Saltzman, S. and Yaron, B., (1977) A possible model for the surface-induced hydrolysis of organophosphorus pesticides on kaolinite clays Soil Sci. Soc. Amer. J. 41 519523.CrossRefGoogle Scholar
Nathan, Y. and Heller, L., (1969) Dehydration of palygorskites and sepiolites Proc. Int. Clay Conf., Tokyo, 1969 Jerusalem Israel Univ. Press 9198.Google Scholar
Polon, J. A. and Sawyer, E. W., (1962) The use of stabilizing agents to decrease decomposition of malathion on high-sorptive carriers J. Agri. Food Chem. 10 244248.CrossRefGoogle Scholar
Preisinger, A., (1963) Sepiolite and related compounds: its stability and application Clays & Clay Minerals 10 365371.Google Scholar
Prost, R. Gerstl, Z. Yaron, B. Chaussidon, J. and Horowitz, M., (1975) Infrared studies of parathion-attapulgite interactions Behavior of Pesticides in Soils Bet Dagan, Israel The Volcani Center 2732.Google Scholar
Rosenfleld, C. and Van Valkenburg, W., (1965) Decomposition of (0,0-dimethyl-0-2,4,5 trichlorophenyl) phosphorothioate (Ronnel) adsorbed on bentonite and other clays J. Agri. Food Chem. 13 6872.Google Scholar
Saltzman, S. Mingelgrin, U. and Yaron, B., (1976) The role of water in the hydrolysis of parathion and methyl parathion on kaolinite J. Agri. Food Chem. 24 739743.CrossRefGoogle Scholar
Satyabrata Ray, H. R. Gault, H. R. and Dodd, C. G., (1957) The separation of clay minerals from carbonate rocks Amer. Mineral. 42 681686.Google Scholar
Serna, C. Van Scoyoc, E. and Ahlrichs, J. L., (1977) Hydroxyl groups and water in palygorskite Amer. Mineral. 62 784792.Google Scholar
Thorenz, J., (1976) Practical Identification of Clay Minerals Dison, Belgium G. Lelotte.Google Scholar
Van Olphen, H. and Fripiat, J. J., (1979) Data Handbook for Clay Materials and Other Non-Metallic Minerals Oxford Pergamon Press.Google Scholar
Van Scoyoc, G. E. Serna, C. J. and Ahlrichs, J. L., (1979) Structural changes in palygorskite during dehydration and dehydroxylation Amer. Mineral. 64 215223.Google Scholar
Yaron, B., (1978) Some aspects of surface interactions of clays with organophosphorus pesticides Soil Sci. 125 210216.CrossRefGoogle Scholar