Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T17:20:30.896Z Has data issue: false hasContentIssue false

Simple synthesis and characterization of nanoporous materials from talc

Published online by Cambridge University Press:  01 January 2024

Chunfang Du
Affiliation:
Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083, China
Huaming Yang*
Affiliation:
Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083, China
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Synthetic siliceous mesoporous materials are of great value in many different applications, including nanotechnology, biotechnology, information technology, and medical fields, but historically the resource materials used in their synthesis have been expensive. Recent efforts have focused on indirect synthesis methods which utilize less expensive silicate minerals as a resource material. The purpose of the present study was to investigate talc, a natural silicate mineral, as one such resource. It was used as raw material to prepare two advanced materials: porous silica (PS) and ordered mesoporous silica (MCM-41). The PS, with a specific surface area of 260 m2/g and bimodal pore-size distribution of 1.2 nm and 3.7 nm, was prepared by grinding and subsequent acid leaching. The MCM-41, with a large surface area of 974 m2/g and a narrow pore-size distribution of 2.8 nm, was obtained using a surfactant, cetyltrimethylammonium bromide (CTAB), by hydrothermal treatment using the as-prepared PS as a source of Si. The two resultant materials were characterized by small angle X-ray diffraction (SAXRD) and wide-angle X-ray diffraction (WAXRD), high-resolution transmission electron microscopy (HRTEM), solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR), Fourier transform infrared spectroscopy (FTIR), and N2 adsorption-desorption measurements. Based on these measurements, possible processes of transformation of PS from talc, upon acid treatment, and the formation of MCM-41 were investigated systemically. Acid leaching induced the transformation of a rigid layered structure to a nearly amorphous one, with micropores formed by a residual layered structure and mesopores formed from a condensed framework. The MCM-41 was a mixture of silanol groups (Si(SiO)3(OH)) and a condensed Q4 framework structure (Si(SiO)4), with a small amount of remaining Q3 layered structure (Si(SiO)3OMg). The increased Q4/Q3 value confirmed greater polymerization of MCM-41 than of PS. At the low CTAB concentration used (2 wt.%), the highly charged silicate species controlled the surfactant geometry. Charge-density matching, together with the degree of polymerization of the silicates, determined the resultant mesophase.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Auvray, X. Petipas, C. Anthore, R. Rico, I. and Lattes, A., 1989 X-ray diffraction study of mesophases of cetyltrimethylammonium bromide in water, formamide, and glycerol Journal of Physical Chemistry 93 74587464 10.1021/j100358a040.CrossRefGoogle Scholar
Azaïs, T. Tourné-Péteilh, C. Aussenac, F. Baccile, N. Coelho, C. Devoisselle, J.-M. and Babonneau, F., 2006 Solid-state NMR study of ibuprofen confined in MCM-41 material Chemistry of Materials 18 63826390 10.1021/cm061551c.CrossRefGoogle Scholar
Aznar, A.J. Gutiérrez, E. Díaz, P. Alvarez, A. and Poncelet, G., 1996 Silica from sepiolite: preparation, textural properties, and use as support to catalysts Microporous Materials 6 104114 10.1016/0927-6513(95)00096-8.CrossRefGoogle Scholar
Baccile, N. Laurent, G. Bonhomme, C. Innocenzi, P. and Babonneau, F., 2007 Solid-state NMR characterization of the surfactant-silica interface in templated silicas: acidic versus basic conditions Chemistry of Materials 19 13431354 10.1021/cm062545j.CrossRefGoogle Scholar
Beck, J.S. Vartuli, J.C. Roth, W.J. Leonowicz, M.E. Kresge, C.T. Schmitt, K.D. Chu, C.-W. Oison, D.H. Sheppard, E.W. McCullen, S.B. Higgins, J.B. and Schlenker, J.L., 1992 A new family of mesoporous molecular sieves prepared with liquid crystal templates Journal of the American Chemical Society 114 1083410843 10.1021/ja00053a020.CrossRefGoogle Scholar
Bisio, C. Gatti, G. Boccaleri, E. Marchese, L. and Bertinetti, L., 2008 On the acidity of saponite materials: a combined HRTEM, FTIR, and Solid-State NMR Study Langmuir 24 28082819 10.1021/la703308b.CrossRefGoogle ScholarPubMed
Boissière, C. Larbot, A. and Prouzet, E., 2000 Synthesis of mesoporous MSU-X materials using inexpensive silica sources Chemistry of Materials 12 19371940 10.1021/cm001012m.CrossRefGoogle Scholar
Cai, Y. Kumar, R. Huang, W. Trewyn, B.G. Wiench, J. Pruski, M. and Lin, V.-Y., 2007 Mesoporous aluminum silicate catalyst with single-type active sites: characterization by solid-state NMR and studies of reactivity for claisen rearrangement reactions Journal of Physical Chemistry C 111 14801486 10.1021/jp0659913.CrossRefGoogle Scholar
Coasne, B. Galarneau, A. Renzo, F.D. and Pellenq, R.J.M., 2006 Gas adsorption in mesoporous micelle-templated silicas: MCM-41, MCM-48, and SBA-15 Langmuir 22 1109711105 10.1021/la061728h.CrossRefGoogle ScholarPubMed
Corma, A., 1997 From microporous to mesoporous molecular sieve materials and their use in catalysis Chemical Reviews 97 23732419 10.1021/cr960406n.CrossRefGoogle ScholarPubMed
Davis, M.E., 2002 Ordered porous materials for emerging applications Nature 417 813821 10.1038/nature00785.CrossRefGoogle ScholarPubMed
Firouzi, A. Kumar, D. Bull, L.M. Besier, T. Sieger, P. Huo, Q. Walker, S.A. Zasadzinski, J.A. Glinka, C. Nicol, J. Margolese, D. Stucky, G.D. and Chmelka, B.F., 1995 Cooperative organization of inorganic-surfactant and biomimetic assemblies Science 267 11381143 10.1126/science.7855591.CrossRefGoogle ScholarPubMed
Huo, Q. Margolese, D.I. Ciesla, U. Demuth, D. Feng, P. Gier, T. Sieger, P. Firouzi, A. Chmelka, B. Schûth, F. and Stucky, G.D., 1994 Organization of organic-molecules with inorganic molecular-species into nanocomposite biphase arrays Chemistry of Materials 6 11761191 10.1021/cm00044a016.CrossRefGoogle Scholar
Huo, Q. Margolese, D.I. Ciesla, U. Feng, P. Sieger, P. Leon, R. Petroff, P. Schûth, F. and Stucky, G.D., 1994 Generalized synthesis of periodicsurfactant/inorganic composite materials Nature 368 317321 10.1038/368317a0.CrossRefGoogle Scholar
Inagaki, S., Fukushima, Y., and Kuroda, K. (1993) Synthesis of highly ordered mesoporous materials from a layered polysilicate. Journal of Chemical Society, Chemical Communications, 680682.CrossRefGoogle Scholar
Jin, S. Qiu, G. Xiao, F. Chang, Y. and Wan, C., 2007 Investigation of the structural characterization of mesoporous molecular sieves MCM-41 from sepiolite Journal of American Ceramic Society 90 957961 10.1111/j.1551-2916.2007.01513.x.CrossRefGoogle Scholar
Kaviratna, H. and Pinnavaia, T., 1994 Acid hydrolysis of octahedral Mg2+ sites in 2:1 layered silicates: an assessment of edge attack and gallery access mechanisms Clays and Clay Minerals 42 717723 10.1346/CCMN.1994.0420607.CrossRefGoogle Scholar
Kinsey, R.A. Kirkpatrick, R.J. Hower, J. Smith, K.A. and Oldfield, E., 1985 High resolution aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals American Mineralogist 70 537548.Google Scholar
Kosuge, K. Shimada, K. and Tsunashima, A., 1995 Micropore formation by acid treatment of antigorite Chemistry of Materials 7 22412246 10.1021/cm00060a009.CrossRefGoogle Scholar
Kosuge, K. Kikukawa, N. and Takemori, M., 2004 One-step preparation of porous silica spheres from sodium silicate using triblock copolymer templating Chemistry of Materials 16 41814186 10.1021/cm0400177.CrossRefGoogle Scholar
Kresge, C.T. Leonowicz, M.E. Roth, W.J. Vartuli, J.C. and Beck, J.S., 1992 Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism Nature 359 710712 10.1038/359710a0.CrossRefGoogle Scholar
Laughlin, R.G., 1991 Cationic surfactants: physical chemistry Surfactant Science Series 37 1.Google Scholar
Linssen, T. Cool, P. Baroudi, M. Cassiers, K. Vansant, E.F. Lebedev, O. and Landuyt, J.V., 2002 Leached natural saponite as the silicate source in the synthesis of aluminosilicate hexagonal mesoporous materials Journal of Physical Chemistry B 106 44704476 10.1021/jp015578p.CrossRefGoogle Scholar
Linssen, T. Cassiers, K. Cool, P. Lebedev, O. Whittaker, A. and Vansant, E.F., 2003 Physicochemical and structural characterization of mesoporous aluminosilicates synthesized from leached saponite with additional aluminum incorporation Chemistry of Materials 15 48634873 10.1021/cm031111a.CrossRefGoogle Scholar
Lubguban, J. Jr. Kurate, Y. Inokuma, T. and Hasegawa, S., 2000 Thermal stability and breakdown strength of carbon-doped SiO2: F films prepared by plasma-enhanced chemical vapor deposition method Journal of Applied Physics 87 37153722 10.1063/1.372406.CrossRefGoogle Scholar
MacKenzie, K.J.D. Okada, K. and Temuujin, J., 2004 Nanoporous inorganic materials from mineral templates Current Applied Physics 4 167170 10.1016/j.cap.2003.10.023.CrossRefGoogle Scholar
Madhusoodana, C.D. Kameshima, Y. Nakajima, A. Okada, K. Kogure, T. and MacKenzie, K.J.D., 2006 Synthesis of high surface area Al-containing mesoporous silica from calcined and acid-leached kaolinites as the precursors Journal of Colloid and Interface Science 297 724731 10.1016/j.jcis.2005.10.051.CrossRefGoogle ScholarPubMed
Maqueda, C. Romero, A.S. Morillo, E. and Pérez-Rodríguez, J.L., 2007 Effect of grinding on the preparation of porous materials by acid-leached vermiculite Journal of Physics and Chemistry of Solids 68 12201224 10.1016/j.jpcs.2007.01.037.CrossRefGoogle Scholar
Miao, S. Liu, Z. Ma, H. Han, B. Du, J. Sun, Z. and Miao, Z., 2005 Synthesis and characterization of mesoporous aluminosilicate molecular sieve from K-feldspar Microporous and Mesoporous Materials 83 277282 10.1016/j.micromeso.2005.05.006.CrossRefGoogle Scholar
Mokaya, R., 1999 Improving the stability of mesoporous MCM-41 silica via thicker more highly condensed pore walls Journal of Physical Chemistry B 103 1020410208 10.1021/jp992233m.CrossRefGoogle Scholar
Monnier, A. Schûth, F. Huo, Q. Kumar, D. Margolese, D. Maxwell, R.S. Stucky, G.D. Krishnamurty, M. Petroff, P. Firouzi, A. Janicke, M. and Chmelka, B.F., 1993 Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostrucures Science 261 12991303 10.1126/science.261.5126.1299.CrossRefGoogle Scholar
Mukhopadhyay, K. Sarkar, B.R. and Chaudhari, R.V., 2002 Anchored Pd complex in MCM-41 and MCM-48: novel heterogeneous catalysts for hydrocarboxylation of aryl olefins and alcohols Journal of American Chemical Society 124 96929693 10.1021/ja025991q.CrossRefGoogle ScholarPubMed
Okada, K. Shimai, A. Takei, T. Hayashi, S. Yasumori, A. and MacKenzie, K.J.D., 1998 Preparation of microporous silica from metakaolinite by selective leaching method Microporous and Mesoporous Materials 21 289296 10.1016/S1387-1811(98)00015-8.CrossRefGoogle Scholar
Okada, K. Nakazawa, N. Kameshima, Y. Yasumori, A. Tumuujin, J. MacKenzie, K.J.D. and Smith, M., 2002 Preparation and porous properties of materials prepared by selective leaching of phlogopite Clays and Clay Minerals 50 624632 10.1346/000986002320679503.CrossRefGoogle Scholar
Okada, K. Temuujin, J. Kameshima, Y. and MacKenzie, K.J.D., 2003 Selective acid leaching of talc Clay Science 12 159165.Google Scholar
Okada, K. Arimitsu, N. Kameshima, Y. Nakajima, A. and MacKenzie, K.J.D., 2005 Preparation of porous silica from chlorite by selective acid leaching Applied Clay Science 30 116124 10.1016/j.clay.2005.04.001.CrossRefGoogle Scholar
Okada, K. Yoshizaki, H. Kameshima, Y. Nakajima, A. and Madhusoodana, C.D., 2007 Synthesis and characterization of mesoporous silica from selectively acid-treated saponite as the precursors Journal of Colloid and Interface Science 314 176183 10.1016/j.jcis.2007.05.036.CrossRefGoogle ScholarPubMed
Pauly, T.R. Petkov, V. Liu, Y. Billinge, S.J.L. and Pinnavaia, T.J., 2002 Role of framework sodium versus local framework structure in determining the hydrothermal stability of MCM-41 mesostructures Journal of the American Chemical Society 124 97103 10.1021/ja0118183.CrossRefGoogle ScholarPubMed
Sánchez-Soto, P.J. Wiewióra, A. Avilés, M.A. Justo, A. Pérez-Maqueda, L.A. Pérez-Rodríguez, J.L. and Bylina, P., 1997 Talcfrom Puebla de Lillo, Spain. II. Effect of dry grinding on particle size and shape Applied Clay Science 12 297312 10.1016/S0169-1317(97)00013-6.CrossRefGoogle Scholar
Shenderovich, H.G. Mauder, D. Akcakayiran, D. Buntkowsky, G. Limbach, H.-H. and Findenegg, G.H., 2007 NMR provides checklist of generic properties for atomic-scale models of periodic mesoporous silicas Journal of Physical Chemistry B 111 1208812096 10.1021/jp073682m.CrossRefGoogle ScholarPubMed
Suquet, H., 1989 Effects of dry grinding and leaching of the crystal structure of chrysotile Clays and Clay Minerals 37 439445 10.1346/CCMN.1989.0370507.CrossRefGoogle Scholar
Temuujin, J. Okada, K. Mackenzie, K.J.D. and Jadambaa, T.S., 2001 Characterization of porous silica prepared from mechanically amorphized kaolinite by selective leaching Powder Technology 121 259262 10.1016/S0032-5910(01)00363-1.CrossRefGoogle Scholar
Temuujin, J. Burmaa, G. and Amgalan, J., 2001 Preparation of porous silica from mechanically activated kaolinite Journal of Porous Materials 8 233238 10.1023/A:1012244924490.CrossRefGoogle Scholar
Temuujin, J. Okada, K. Jadambaa, T.S. Mackenzie, K.J.D. and Amarsanaa, J., 2002 Effect of grinding on the preparation of porous material from talc by selective leaching Journal of Materials Science Letters 21 16071609 10.1023/A:1020373617167.CrossRefGoogle Scholar
Temuujin, J. Okada, K. and MacKenzie, K.J.D., 2003 Preparation of porous silica from vermiculite by selective leaching Applied Clay Science 22 187195 10.1016/S0169-1317(02)00158-8.CrossRefGoogle Scholar
Temuujin, J. Okada, K. Jadambaa, T.S. MacKenzie, K.J.D. and Amarsanaa, J., 2003 Effect of grinding on the leaching behaviour of pyrophyllite Journal of the European Ceramic Society 23 12771282 10.1016/S0955-2219(02)00297-2.CrossRefGoogle Scholar
Trebosc, J. Wiench, J.W. Huh, S. Lin, V.-Y. and Pruski, M.J., 2005 Solid-state NMR study of MCM-41-type mesoporous silica nanoparticles Journal of the American Chemical Society 127 30573068 10.1021/ja043567e.CrossRefGoogle ScholarPubMed
Vallet-Regi, M. Rámila, A. del Real, R.P. and Pérez-Pariente, J., 2001 A new property of MCM-41: drug delivery system Chemistry of Materials 13 308311 10.1021/cm0011559.CrossRefGoogle Scholar
Vicente, M.A. Suárez, M. de López-González, J. D. and Bañares-Muñoz, M.A., 1996 Characterization, surface area, and porosity analyses of the solids obtained by acid leaching of a saponite Langmuir 12 566572 10.1021/la950501b.CrossRefGoogle Scholar
Warren, A.C. Messina, L.C. Slaughter, L.S. Kamperman, M. Zhou, Q. Gruner, S.M. DiSalvo, F.J. and Wiesner, U., 2008 Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly Science 320 17481753 10.1126/science.1159950.CrossRefGoogle ScholarPubMed
Xu, J. Luan, Z. He, H. Zhou, W. and Kevan, L., 1998 A reliable synthesis of cubic mesoporous MCM-48 molecular sieve Chemistry of Materials 10 36903698 10.1021/cm980440d.CrossRefGoogle Scholar
Yanagisawa, T. Shimizu, T. Kuroda, K. and Kato, C., 1990 The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials Bulletin of the Chemical Society of Japan 63 988992 10.1246/bcsj.63.988.CrossRefGoogle Scholar
Yang, H. Du, C. Hu, Y. Jin, S. Yang, W. Tang, A. and Avvakumov, E.G., 2006 Preparation of porous material from talc by mechanochemical treatment and subsequent leaching Applied Clay Science 31 290297 10.1016/j.clay.2005.10.015.CrossRefGoogle Scholar
Zhao, D.Y. Feng, J.L. Huo, Q.S. Melosh, N. Fredrickson, G.H. Chmelka, B.F. and Stucky, G.D., 1998 Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores Science 279 548552 10.1126/science.279.5350.548.CrossRefGoogle ScholarPubMed