Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T02:36:26.114Z Has data issue: false hasContentIssue false

Reaction Series for Dioctahedral Smectites

Published online by Cambridge University Press:  01 July 2024

Dennis Eberl*
Affiliation:
Department of Geology, University of Illinois, Urbana, Ill. 61801
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several dioctahedral clay minerals are related through reaction series. These series can be produced hydro-thermally from beidellite gel and montmorillonite by making simple changes in interlayer and solution chemistry. The series are:

  • gel-K-beidellite-random illite/smectite-K-rectorite-illite

  • K-montmorillonite-K-rectorite-illite

  • Na-montmorillonite or beidellite-Na-rectorite-paragonite

  • Li-montmorillonite-Li-tosudite-Li-rectorite-cookeite(?)

  • Mg-montmorillonite-Mg-rectorite-tosudite-sudoite(?)

  • Ca-montmorillonite-Ca-rectorite-margarite(?)

  • Al-Ca-montmorillonite-kaolinite/smectite-kaolinite (150°C)

  • Al-Ca-montmorillonite-pyrophyllite/smectite-pyrophyllite (320°C).

Assuming stability for the mixed-layer phases, paragenesis is a function of P, T, and X conditions. If the phases are considered to be metastable, paragenesis is a function of the speed and path of reaction.

Резюме

Резюме

Несколько диоктаэдрических глинистых минералов связываются посредством реакционных серий. Эти серии могут быть получены гидротермически из бейделлитового геля и монтмориллонита в результате простых изменений в меж-слойных промежутках и в химии раствора. Этими сериями являются

гель—К-бейделлит —любой иллит/смектит—К-ректорит—иллит

К-монтмориллонит—К-ректорит—иллит

Na- монтмориллонит или бейделлит—Ыа-ректорит—парагонит

Li-монтмориллонит—Li-тосудит—Li-ректорит—кукеит(?)

Mg-монтмориллонит—Mg-ректорит—тосудит—судоит(?)

Ca-монтмориллонит—Са-ректорит—Маргарит(?)

Al-Ca-монтмориллонит—каолинит/смектит—каолинит(150°С)

Al-Ca-монтмориллонит—пирофиллит/смектит—пирофиллите 320°С)

Если предположить стабильность смешанно-слойных фаз,парагенезис является функцией условий Р,Т,Х. Если фазы рассматривать как неустойчивые,парагенезис является функцией скорости и пути реакции.

Kurzreferat

Kurzreferat

Mehrere dioktahedrische Tonmineralien gehören zu denselben Reaktionsserien. Diese Serien können aus Beidellitgel und Montmorillonit hydrothermisch hergestellt werden, indem einfache Änderungen in der Zwischenschicht-und Lösungschemie gemacht werden. Die Serien sind die folgenden:

Gel—K-Beidellit—nicht geordnetes Illit/Smektit—K-Rektorit—Illit

K-Montmorillonit—K-Rektorit—Illit

Na-Montmorillonit oder Beidellit—Na-Rektorit—Paragonit

Li-Montmorillonit—Li-Tosudit—Li-Rektorit—Cookeit (?)

Mg-Montmorillonit—Mg-Rektorit—Tosudit—Sudoit (?)

Ca-Montmorillonit—Ca-Rektorit—Margarit (?)

Al-Ca-Montmorillonit—Kaolinit/Smektit—Kaolinit (150°C)

Al-Ca-Montmorillonit—Pyrophyllit/Smektit—Pyrophyllit (320°C)

Wenn man annimmt, daß die gemischt-Schicht Phasen stabil sind, dann ist die Paragenesis eine Funktion der P,T,X Konditionen. Falls die Phasen für metastabil gehalten werden,dann ist die Paragenesis eine Funktion der Geschwind igkeit der Reaktion und des Reaktionsweges.

Résumé

Résumé

Plusieurs minéraux argileux dioctaèdraux sont apparentés par des suites de réaction. Ces suites peuvent être produites de manière hydrothermale à partir de gels de beidellite et de montmorillonite en faisant de simples changements dans la chimie interfeuillet et de solution. Ces suites sont:

gel—K-beidellite—illite/smectite—K-rectorite—illite

K-montmorillonite—K-rectorite—illite

Na-montmorillonite, beidellite—Na-rectorite—paragonite

Li-montmorillonite—Li-tosudite—Li-rectorite—cookeite(?)

Mg-montmorillonite—Mg-rectorite—tosudite—sudoite(?)

Ca-montmorillonite—Ca-rectorite—margarite(?)

Al-Ca-montmorillonite—kaolinite/smectite—kaolinite(150°C)

Al-Ca-montmorillonite—pyrophyllite/smectite—pyrophyllite(320°C)

Présumant un état de stabilité pour les phases à feuillets mélangés, la paragénèse est une fonction des conditions P,T,X. Si les phases sont considérées comme étant métastables, la paragénèse est une fonction de la vitesse et de la direction de réaction.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

References

Altschuler, Z. S., Dwornik, E. J. and Kramer, H. (1963) Transformation of montmorillonite to kaolinite during weathering: Science 141, 148152.CrossRefGoogle ScholarPubMed
Bailey, S. W. (1975) Chlorites. In, Soil Components, v. 2, Inorganic Components: (edited by Gieseking, J. E.) , pp. 191263. Springer-Verlag, New York.CrossRefGoogle Scholar
Bannister, F. A. (1943) Brammallite (sodium illite), a new mineral from Llandebie, South Wales: Mineral. Mag. 26, 304307.Google Scholar
Blatter, C. L., Roberson, H. E. and Thompson, G. T. (1973) Regularly interstratified chlorite-dioctahedral smectite in dike-intruded shales, Montana: Clays & Clay Minerals 21, 207212.CrossRefGoogle Scholar
Brackett, N. F. and Williams, J. F. (1891) Newtonite and rectorite. Am. J. Sci. 42, 1121.CrossRefGoogle Scholar
Brindley, G. W. and Sandalaki, Z. (1963) Structure, composition and genesis of some long-spacing, mica-like minerals: Am. Mineral. 48, 138149.Google Scholar
Brown, G. (1961) The X-ray Identification and Crystal Structure of Clay Minerals: Mineral. Soc., London, 544 pp.Google Scholar
Brown, G. and Weir, A. H. (1963a) The identity of rectorite and allevardite: Int. Clay Conf. Proc. 1, Stockholm, 2735.Google Scholar
Brown, G. and Weir, A. H. (1963b) An addition to the paper, “The identity of rectorite and allevardite”: Int. Clay Conf. Proc. 2, Stockholm, 8790.Google Scholar
Brown, G., Bourguignon, P. B. and Thorez, J. (1974) A lithium bearing aluminum regular mixed layer montmorillonite-chlorite from Huy, Belgium: Clay Miner. 10, 135144.CrossRefGoogle Scholar
Eberl, D. (1978) The reaction of montmorillonite to mixed-layer clay: the effect of interlayer alkali and alkaline earth cations: Geochim. Cosmochim. Acta 42, 17.CrossRefGoogle Scholar
Eberl, D. and Hower, J. (1976) Kinetics of illite formation: Geol. Soc. Am. Bull. 87, 13261330.2.0.CO;2>CrossRefGoogle Scholar
Eberl, D. and Hower, J. (1977) The hydrothermal transformation of sodium and potassium smectite into mixed-layer clay: Clays & Clay Minerals 25, 215227.CrossRefGoogle Scholar
Eberl, D., Whitney, G. and Khoury, H. (1978) Hydrothermal reactivity of smectite: Am. Mineral., in press.Google Scholar
Eslinger, E. V. and Savin, S. (1973) Mineralogy and oxygen isotope geochemistry of hydrothermally altered rocks of the Ohaki-Broadlands, New Zealand geothermal area: Am. J. Sci. 273, 240267.CrossRefGoogle Scholar
Frank-Kamenetsky, V. A., Logvineko, N. V. and Dritz, V. A. (1963) Tosudite—a new mineral forming the mixed-layer phase in alushtite: Proc. Int. Clay Conf. 2, Stockholm, 181186.Google Scholar
Frey, M. (1970) The step from diagenesis to metamorphism in pelitic rocks during Alpine orogenesis. Sedimentology 15, 261279.CrossRefGoogle Scholar
Frey, M. (1974) Alpine metamorphism of pelitic and marly rocks of the central Alps: Schweiz. Mineral. Petrogr. Mitt. 54, 489506.Google Scholar
Helgeson, H. C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures: Am. J. Sci. 267, 729804.CrossRefGoogle Scholar
Henderson, G. V. (1971) The origin of pyrophyllite and rectorite in shales of north-central Utah: Clays & Clay Minerals 19, 239246.Google Scholar
Hower, J. and Mowatt, T. C. (1966) Mineralogy of the illite-illite/montmorillonite group: Am. Mineral. 51, 821854.Google Scholar
Hower, J., Eslinger, E., Hower, M. and Perry, E. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence: Geol. Soc. Am. Bull. 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Ichikawa, A. and Shimoda, S. (1976) Tosudite from the Hokuno Mine, Hokuno, Gifu Prefecture, Japan: Clays & Clay Minerals 24, 142148.CrossRefGoogle Scholar
Jackson, M. L. (1975) Soil Chemical Analysis—Advanced Course. 2nd edition, 10th printing: Published by the author, Madison, Wis. 53705.Google Scholar
Kanaoka, S. (1975) Tosudite-like clay minerals in pottery stone. In Contributions to Clay Mineralogy in Honor of Professor Toshio Sudo, 3441.Google Scholar
Kodama, H. (1958) Mineralogical study on some pyrophyllites in Japan: Mineral. J. (Japan) 2, 236.CrossRefGoogle Scholar
Kodama, H. (1966) The nature of the component layers of rectorite: Am. Mineral. 51, 10351055.Google Scholar
Lagaly, G. and Weiss, A. (1975) The layer charge of smectitic layer silicates: Int. Clay Conf. Proc. Mexico, 157172.Google Scholar
Lippmann, F. (1954) Über einen Keuperton von Zaisersweiher bei Maulbronn: Heidelb. Beitr. Mineral. Petrogr. 4, 130134.Google Scholar
Lippmann, F. (1976) Corrensite, a swelling clay mineral, and its influence on floor heave in tunnels in the Keuper Formation: Bull. Int. Assoc. Eng. Geol. 13, 6568.Google Scholar
Luth, W. C. and Ingamells, C. O. (1965) Gel preparation of starting materials for hydrothermal experimentation: Am. Mineral. 50, 255260.Google Scholar
MacEwan, D. M. C. and Ruiz-Amil, A. (1975) Interstratified clay minerals. In: Soil Components 2: Inorganic Components (Edited by Gieseking, J. E.) , Springer-Verlag, 265334.CrossRefGoogle Scholar
Miser, H. D. and Milton, C. (1964) Quartz, rectorite and cookeite from the Jeffrey Quarry, near North Little Rock, Pulaski County, Arkansas: Arkansas Geol. Comm. Bull. 21, 29 pp.Google Scholar
Moll, W. F. Jr., Johns, W. D. and Van Olphen, H. (1975) Source clay minerals (abs.): Proc. Int. Clay Conf., Mexico, p. 465.Google Scholar
Nemecz, E., Varju, G. and Barna, J. (1963) Allevardite from Kiralyhegy, Tokaj Mountains, Hungary: Proc. Int. Clay Conf. 2, Stockholm, 5167.Google Scholar
Nishiyama, T., Shimoda, S., Shimosaka, K. and Kanaoka, S. (1975) Lithium-bearing tosudite: Clays & Clay Minerals 23, 337342.CrossRefGoogle Scholar
Parachoniak, W. and Środoń, J. (1973) The formation of kaolinite, montmorillonite and mixed-layer montmorillonite-illites during the alteration of carboniferous tuff (the Upper Silesian Coal Basin): Mineral. Pol. 4, 3752.Google Scholar
Pedro, G. (1970) Report of the AIPEA Nomenclature Committee: AIPEA Newsletter 4, 34.Google Scholar
Perry, E. and Hower, J. (1970) Burial diagenesis in Gulf Coast pelitic sediments: Clays & Clay Minerals 18, 165178.CrossRefGoogle Scholar
Reynolds, R. C. Jr. and Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonites: Clays & Clay Minerals 18, 2536.CrossRefGoogle Scholar
Rodriques, G. and Perez, A. (1965) A regular mixed-layer mica-beidellite: Clay Miner. 6, 119122.Google Scholar
Sakharov, B. A. and Dritz, V. A. (1973) Mixed-layer kaolinite-montmorillonite: a comparison of observed and calculated diffraction patterns: Clays & Clay Minerals 21, 1517.CrossRefGoogle Scholar
Schultz, L., Shepard, A., Blackman, P. and Starkey, H. (1970) Mixedlayer kaolinite-montmorillonite from the Yucatan Peninsula, Mexico: Clays & Clay Minerals 19, 137150.CrossRefGoogle Scholar
Shimoda, S. (1969) New data for tosudite. Clays & Clay Minerals 17, 179184.CrossRefGoogle Scholar
Shirozu, H. and Higashi, S. (1976) Structural investigations of sudoite and regularly interstratified sericite/sudoite: Mineral. J. (Japan) 8, 158170.CrossRefGoogle Scholar
Shridhar, K. and Jackson, M. L. (1974) Layer charge decrease by tetrahedral cation removal and silicon incorporation during natural weathering of phlogopite to saponite: Soil Sci. Soc. Am. Proc. 38, 847850.CrossRefGoogle Scholar
Środoń, J. (1972) Mineralogy of coal-tonstein and K-bentonite from coal seam No. 610, Bytom Trough (Upper Silesian Coal Basin, Poland): Bull. Acad. Pol. Sci. Ser. Sci. Terre 20, 155164.Google Scholar
Środoń, J. (1976) Mixed-layer smectite/illites from carboniferous bentonites and tonsteins of Poland (abstr.): 25th Clay Miner. Conf., Corvallis, p. 36.Google Scholar
Sudo, T., Hayashi, H. and Shimoda, S. (1962) Mineralogical problems of intermediate clay minerals: Clays & Clay Minerals 9, 378392.CrossRefGoogle Scholar
Suquet, H., Iiyama, J. T., Kodama, H. and Pezerat, H. (1977) Synthesis and swelling properties of saponites with increasing layer charge: Clays & Clay Minerals 25, 231242.CrossRefGoogle Scholar
Tardy, Y. and Garrels, R. M. (1974) A method of estimating the Gibbs energies of formation of layer silicates: Geochim. Cosmochim. Acta 38, 11011116.CrossRefGoogle Scholar
Thompson, G. R. and Hower, J. (1975) The mineralogy of glauconite: Clays & Clay Minerals 23, 289300.CrossRefGoogle Scholar
Velde, B. (1969) The compositional join muscovite-pyrophyllite at moderate pressures and temperatures: Bull. Soc. Fr. Mineral. Cristallogr. 92, 360368.Google Scholar
Velde, B. (1971) The stability and natural occurrence of margarite: Mineral. Mag. 38, 317332.CrossRefGoogle Scholar
Velde, B. (1972) Phase equilibria for dioctahedral expandable phases in sediments and sedimentary rocks: Proc. Int. Clay Conf., Madrid, 285300.Google Scholar
Velde, B. and Odin, G. S. (1975) Further information related to the origin of glauconite: Clays & Clay Minerals 23, 376381.CrossRefGoogle Scholar
Weaver, C. E. and Beck, K. C. (1971) Clay water diagenesis during burial: how mud becomes gneiss: Geol. Soc. Am. Spec. Pap. 134, 178.Google Scholar
Weir, A. H. and Greene-Kelley, R. (1962) Beidellite. Am. Mineral. 47, 137146.Google Scholar
White, A., Glass, H. D. and Burke, D. A. (1977) Clay mineral profiles in the seatrock below the Summun no. 4 coal member of Illinois (abs.): 26th Annu. Clay Miner. Conf., Jamaica.Google Scholar
Wiewiora, A. (1971) A mixed-layer kaolinite-smectite from Lower Silesia, Poland: Clays & Clay Minerals 19, 415416.CrossRefGoogle Scholar
Wiewiora, A. (1972) A mixed-layer kaolinite-smectite from Lower Silesia, Poland: Proc. Int. Clay Conf. 1, Madrid, 101116.Google Scholar
Wyart, J. and Sabatier, G. (1966) Synthèse hydrothermale de la corrensite: Bull. Groupe Fr. Argiles 18, 3340.CrossRefGoogle Scholar