Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T12:17:42.707Z Has data issue: false hasContentIssue false

Preparation and Characterization of Montmorillonites Pillared by Cationic Silicon Species

Published online by Cambridge University Press:  28 February 2024

Geolar Fetter
Affiliation:
Laboratoire de Chimie Organique Physique et Cinétique Chimique Appliquées, URA 418 du CNRS, ENSCM, 8, Rue de l'Ecole Normale, 34053 Montpellier Cedex 2, France
Didier Tichit
Affiliation:
Laboratoire de Chimie Organique Physique et Cinétique Chimique Appliquées, URA 418 du CNRS, ENSCM, 8, Rue de l'Ecole Normale, 34053 Montpellier Cedex 2, France
Pascale Massiani
Affiliation:
Laboratoire de Chimie Organique Physique et Cinétique Chimique Appliquées, URA 418 du CNRS, ENSCM, 8, Rue de l'Ecole Normale, 34053 Montpellier Cedex 2, France
Roger Dutartre
Affiliation:
Laboratoire de Chimie Organique Physique et Cinétique Chimique Appliquées, URA 418 du CNRS, ENSCM, 8, Rue de l'Ecole Normale, 34053 Montpellier Cedex 2, France
François Figueras
Affiliation:
Laboratoire de Chimie Organique Physique et Cinétique Chimique Appliquées, URA 418 du CNRS, ENSCM, 8, Rue de l'Ecole Normale, 34053 Montpellier Cedex 2, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The hydrolysis of 2-(2-trichlorosilylethyl)pyridine (TCSEP) or 3-aminopropyltrimethoxysilane (APTMS) yields a complex mixture of oligomers, the composition of which is a function of time. 29Si NMR measurements show that the same oligosilsesquioxanes can be obtained from both compounds after prolonged hydrolysis. Ion exchange by montmorillonite with the pillaring solution obtained from TCSEP results in partial intercalation, with a noticeable fraction of the clay exchange sites occupied by protons not by the Si cationic species. Calcination of this pillared clay results in a mixture of phases showing 1.86 or 1.56 nm basal spacings. Pillaring of the same montmorillonite by the solution obtained by partial hydrolysis of APTMS results in a homogeneous solid with a basal spacing of 2 nm, which reduces to 1.65 nm upon calcination above 773 K. The microporous volume (pores < 1 nm) of these Si-clays, determined after calcination at 773 K, 0.15 ml/g for the PILC obtained from TCSEP, and 0.186 ml/g for the PILC obtained from APTMS is comparable to that measured for Al or Zr pillared clays. A better thermal stability is observed for the clay pillared by APTMS, which retains a large microporosity (0.167 ml/g) up to 973 K in air. These Si-pillared clays show a small number of weakly acidic sites and some strongly acidic sites retaining ammonia up to 723 K, which are most likely localized on the clay layers.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

Footnotes

1

Fellowship provided by the CNPq of Brazil.

References

Burch, R., (1988) Pillared clays: Catalysis Today 2, 185366.CrossRefGoogle Scholar
Choudary, B. M., Valli, V. L. K., and Durga Prasad, A., (1990a) A new vanadium-pillared montmorillonite catalyst for the regioselective epoxidation of allylic alcohols: J. Chem. Soc. Chem. Commun., 721722.CrossRefGoogle Scholar
Choudary, B. M., Valli, V. L. K., and Durga Prasad, A., (1990b) An improved asymmetric epoxidation of allyl alcohols using titanium-pillared montmorillonite as a heterogeneous catalyst: J. Chem. Soc. Chem. Commun., 11861187.CrossRefGoogle Scholar
Endo, T., Mortland, M. M., and Pinnavaia, T. J., (1980) Intercalation of silica in smectite: Clays & Clay Minerals 28, 105110.CrossRefGoogle Scholar
Farfan Torres, E. M., Grange, P., and Delmon, B., (1988) Preparacion y caracterizacion de montmorillonitas intercaladas con silicio: Actas XI Simp. Ibero Amer. Catalisis, Guanajuato (Mexico) 1988, Cossio, F., Bermudez, O., Angel, G. del, and Gomez, R., eds., IMP-SIC, 271277.Google Scholar
Fetter, G., Tichit, D., Massiani, P., Dutartre, R., and Figueras, F., (1990) Preparation and characterization of montmorillonite pillared by cationic silicon species: in Proceedings 12th Ibero-American Symp. Catalysis, Rio de Janeiro (Brasil), 1990: Instituto Brasileiro Petroleo Ed, 448457.Google Scholar
Figueras, F., (1988) Pillared clays as catalysts: Catal. Rev. Sci-Eng. 30, 457499.CrossRefGoogle Scholar
Figueras, F., Klapyta, Z., Massiani, P., Mountassir, Z., Tichit, D., Fajula, F., Gueguen, C., Bosquet, J., and Auroux, A., (1990) Use of competitive ion exchange for intercalation of montmorillonite with hydroxy-aluminium species: Clays & Clay Minerals 38, 257264.CrossRefGoogle Scholar
Figueras, F., Mattrod Bashi, A., Fetter, G., Thrierr, A., and Zanchetta, J. V., (1989) Preparation and thermal properties of Zr-intercalated clays: J. Catal. 119, 9196.CrossRefGoogle Scholar
Guan, J., Enze, Min, and Yu, Z., (1986) A class of pillared interlayered clay molecular sieve with regularly interstratified mineral structure: Eur. Pat. 0197012, 31 pp.Google Scholar
Johnson, I. J., Werpy, T. A., and Pinnavaia, T. J., (1988) Tubular silicate-layered silicate intercalation compounds: A new family of pillared clays: J. Amer. Chem. Soc. 110, 85458547.CrossRefGoogle Scholar
Kintzinger, J. P., and Marsmann, H., (1981) Oxygen-17 and Silicon-29 in NMR, Basic Principles and Progress, Vol. 17, Diehl, P., Fluck, E., and Klosfeld, R., eds., Springer Verlag, Berlin, 235 pp.Google Scholar
Lewis, R. M., Ott, K. C., and Van Santen, R. A., (1985) Silica-clay complexes: US Pat. 4,510,257, 14 pp.Google Scholar
Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G., and Grimmer, A. R., (1980) Structural studies of silicates by solid-state high resolution 29Si NMR: J. Amer. Chem. Soc. 102, 48894893.CrossRefGoogle Scholar
Matsuda, T., Matsukata, M., Kikuchi, E., and Morita, Y., (1986) Reaction of 1,2,4-trimethylbenzene and methanol on montmorillonite catalysts pillared by aluminium hydroxyl complexes: Appl. Catal. 21, 297306.CrossRefGoogle Scholar
Moini, A., and Pinnavaia, T. J., (1988) A new strategy for the synthesis of pillared clays with super galleries: Direct intercalation of metal oxide sols (DIMOS): Solid State Ionics 26, 119123.CrossRefGoogle Scholar
Occelli, M. L., Innes, R. A., Hwu, F. S. S., and Hightower, J. W., (1985) Sorption and catalysis on sodium-montmorillonite interlayered with aluminum oxide clusters: Appl. Catal. 14, 6982.CrossRefGoogle Scholar
Pinnavaia, T. J., (1992) Approaches to the synthesis of supergallery pillared clays: in Expanded Clays and Other Microporous Solids, Occelli, M. L., and Robson, H. E., eds., Van Nostrand Reinhold, New York, 112.Google Scholar
Pinnavaia, T. J., Mortland, M. M., and Endo, T., (1983) Silica-clay complexes: U.S. Pat. 4,367,163, 9 pp.Google Scholar
Pinnavaia, T. J., Tzou, M. S., and Landau, S. D., (1988) New chromia pillared clay catalysts: J. Amer. Chem. Soc. 107, 47834785.CrossRefGoogle Scholar
Plee, D., Gatineau, L., and Fripiat, J. J., (1987) Pillaring processes of smectites with and without tetrahedral substitution: Clays & Clay Minerals 35, 8188.CrossRefGoogle Scholar
Sprung, R., Davis, M. E., Kauffman, J. S., and Dybowski, C., (1990) Pillaring of magadiite with silicate species: Ind. Eng. Chem. Res. 29, 213220.CrossRefGoogle Scholar
Tichit, D., Fajula, F., Figueras, F., Ducourant, B., Mascherpa, G., Gueguen, C., and Bosquet, J., (1988) Sintering of montmorillonites pillared by hydroxy-aluminium species: Clays & Clay Minerals 36, 369375.CrossRefGoogle Scholar
Vaughan, D. E. W., Lussier, R. J., and Magee, J. S., (1979) Pillared interlayered clay materials useful as catalysts and sorbents: U.S. Pat. 4,176,090, 14 pp.Google Scholar
Vaughan, D. E. W., Lussier, R. J., and Magee, J. S., (1981) Stabilized pillared clays: U.S. Pat. 4,248,739, 4 pp.Google Scholar
Voronkov, A. G., and Laurentyev, V. I., (1982) Polyhedral oligosilsesquioxanes and their homo derivatives: in Topics in Current Chemistry, Vol. 102, Springer Verlag, Berlin, 199236.Google Scholar