Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-18T20:29:39.389Z Has data issue: false hasContentIssue false

Microstructures, Mixed Layering, and Polymorphism of Chlorite and Retrograde Berthierine in the Kidd Creek Massive Sulfide Deposit, Ontario

Published online by Cambridge University Press:  28 February 2024

Wei-Teh Jiang
Affiliation:
Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan, 48109
Donald R. Peacor
Affiliation:
Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan, 48109
John F. Slack
Affiliation:
U. S. Geological Survey, National Center, M.S. 954, Reston, Virginia 22092
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Transmission electron microscopy (TEM) was utilized to determine the origins of berthierine and chlorite in the core of the footwall alteration zone of the Kidd Creek massive sulfide deposit, Ontario. TEM images show lamellar intergrowths of packets of berthierine, mixed-layer chlorite/berthierine, Fe-Mg chlorite, and relatively Fe-rich chlorite that contain dislocations, stacking faults, kink bands, and gliding along (001). Interstratification of packets of berthierine and chlorite with one to several tens of layers commonly is associated with terminations of a layer of chlorite by two layers of berthierine. Layers in adjacent domains of berthierine and chlorite are continuous across interfaces that transect their common {001} planes. High-strain zones that cut across cleavage planes, consisting of distorted layers and lens-shaped pores, are associated with stacking faults and gliding along cleavage planes in chlorite crystals. Similar features separate interstratified chlorite/berthierine of different structures and textures, implying development of such composite grains after deformation of chlorite. Electron diffraction patterns show that the chlorite is an ordered one- or two-layer polytype or a one-layer polytype with semi-random stacking, and that the berthierine is a one-layer polytype with semi-random stacking epitaxially intergrown with chlorite.

Coexisting chlorite and berthierine have nearly identical ranges of compositions, containing Si ≅ 5, Al ≅ 6, and Fe ≅ 6.5–8.5 pfu, and minor, variable Mg and Mn contents, in formulae normalized on the basis of 20 total cations. This implies polymorphism among Fe,Al-rich members of the serpentine and chlorite groups. In one of the samples, berthierine and mixed-layer chlorite/berthierine coexist with chlorite having two compositional ranges, including Fe-rich chlorite with a relatively wide range of Fe-Mg contents, and a dominant Fe-Mg chlorite. In another sample, compositionally homogeneous Fe-rich chlorite is associated with berthierine and mixed-layer chlorite/berthierine; Fe-Mg chlorite was not detected.

The microstructural relations and the presence of coexisting polymorphs, complex mixed layering, heterogeneous polytypism, and wide ranges of mineral compositions are consistent with replacement of chlorite by berthierine under non-equilibrium retrograde conditions, in contrast to the generally assumed prograde origin for other berthierine occurrences.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

Footnotes

Contribution No. 493 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109.

References

Ahn, J. H. and Peacor, D. R., 1985 Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments Clays & Clay Minerals 33 228236 10.1346/CCMN.1985.0330309.CrossRefGoogle Scholar
Ahn, J. H. and Peacor, D. R., 1987 Kaolinization of biotite: TEM data and implications for an alteration mechanism Amer. Mineral. 72 353356.Google Scholar
Amouric, M., Gianetto, I. and Proust, D., 1988 7, 10, and 14 Å mixed-layer phyllosilicates studied structurally by TEM in pelitic rocks of the Piemontese zone (Venezuela) Bull. Mineral. 111 2937.Google Scholar
Bailey, S. W., Brindley, G. W. and Brown, G., 1984 Structure of layer silicates Crystal Structures of Clay Minerals and Their X-Ray Identification London The Mineralogical Society 1124.Google Scholar
Bailey, S. W. and Bailey, S. W., 1988 Structures and compositions of other trioctahedral 1:1 phyllosilicates Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical Society of America, Reviews in Mineralogy 19 169188 10.1515/9781501508998-011.CrossRefGoogle Scholar
Bailey, S. W., 1988 X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite Clays & Clay Minerals 36 193213 10.1346/CCMN.1988.0360301.CrossRefGoogle Scholar
Bailey, S. W. and Bailey, S. W., 1988 Chlorites: Structures and crystal chemistry Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical Society of America, Reviews in Mineralogy 19 347403 10.1515/9781501508998-015.CrossRefGoogle Scholar
Banfield, J. F. and Eggleton, R. A., 1988 Transmission electron microscope study of biotite weathering Clays & Clay Minerals 36 4760 10.1346/CCMN.1988.0360107.CrossRefGoogle Scholar
Banfield, J. F., Karabinos, P. and Veblen, D. R., 1989 Transmission electron microscopy of chloritoid: Intergrowth with sheet silicates and reactions in metapelites Amer. Mineral. 74 549564.Google Scholar
Barrie, C. T. and Davis, D. W., 1990 Timing of magmatism and deformation in the Kamiskotia-Kidd Creek area, western Abitibi subprovince, Canada Precam. Research 46 217240 10.1016/0301-9268(90)90003-9.CrossRefGoogle Scholar
Bhattacharyya, D. P., 1983 Origin of berthierine in ironstones Clays & Clay Minerals 31 173182 10.1346/CCMN.1983.0310302.CrossRefGoogle Scholar
Bons, A.-J., 1988 Deformation of chlorite in naturally deformed low-grade rocks Tectonophysics 154 149165 10.1016/0040-1951(88)90232-6.CrossRefGoogle Scholar
Brindley, G. W., 1982 Chemical compositions of berthierines—A review Clays & Clay Minerals 30 153155 10.1346/CCMN.1982.0300211.CrossRefGoogle Scholar
Brisbin, D., Kelly, V., Cook, R., Fyon, J. A. and Green, A. H., 1990 Kidd Creek mine Geology and Ore Deposits of the Timmins District, Ontario 6676.CrossRefGoogle Scholar
Brown, B. E. and Bailey, S. W., 1962 Chlorite polytypism: I. Regular and semi-random one-layer structures Amer. Mineral. 47 819850.Google Scholar
Chamley, H., 1990 Clay Sedimentology New York Springer-Verlag 10.1007/978-3-642-75565-1.Google Scholar
Coad, P. R., 1985 Rhyolite geology at Kidd Creek—A progress report Can. Inst. Mining Metall. Bull. 78 7083.Google Scholar
Craig, J., Fitches, W. R. and Maltman, A. J., 1982 Chlo-rite-mica stacks in low-strain rocks from central Wales Geol. Magazine 119 243256 10.1017/S0016756800026066.CrossRefGoogle Scholar
Curtis, C. D., Hughes, C. R., Whiteman, J. A. and Whittle, C. K., 1985 Compositional variations within some sedimentary chlorites and some comments on their origin Mineral. Mag. 49 375386 10.1180/minmag.1985.049.352.08.CrossRefGoogle Scholar
Dimberline, A., 1986 Electron microscope and microprobe analysis of chlorite-mica stacks in the Wenlock turbidites, mid Wales, U.K. Geol. Magazine 123 299306 10.1017/S0016756800034774.CrossRefGoogle Scholar
Edington, J. W., 1975 Interpretation of Transmission Electron Micrographs, Monographs in Practical Electron Microscopy in Material Science, Vol. 3 London The MacMillan Press Ltd. 10.1007/978-1-349-02658-6.Google Scholar
Ferrow, E. A., London, D., Goodman, K. S. and Veblen, D. R., 1990 Sheet silicates of the Lawler Peak granite, Arizona: Chemistry, structural variations, and exsolution Contrib. Mineral. Petr. 105 491501 10.1007/BF00302490.CrossRefGoogle Scholar
Foster, M. D., 1962 Interpretation of the composition and a classification of the chlorites U.S. Geol. Survey Prof. Paper 414A A1A33.Google Scholar
Frey, M., 1970 The step from diagenesis to metamorphism in pelitic rocks during Alpine orogenesis Sedimentology 15 261279 10.1111/j.1365-3091.1970.tb02189.x.CrossRefGoogle Scholar
Frey, M., (1978) Progressive low-grade metamorphism of a black shale formation, central Swiss Alps, with special reference to pyrophyllite and margarite bearing assemblages: J. Petrol. 19, 95135.CrossRefGoogle Scholar
Goodwin, L. B. and Wenk, H.-R., 1990 Intracrystalline folding and cataclasis in biotite of the Santa Rosa mylonite zone: HVEM and TEM observations Tectonophysics 172 201214 10.1016/0040-1951(90)90030-C.CrossRefGoogle Scholar
Gregg, W. J., 1985 Deformation of chlorite-mica aggregates in cleaved psammitic and pelitic rocks from Islesboro, Maine, U.S.A. J. Struc. Geol. 8 5968 10.1016/0191-8141(86)90017-9.CrossRefGoogle Scholar
Guthrie, G. D. Jr. and Veblen, D. R., 1990 Interpreting one-dimensional high-resolution transmission electron micrographs of sheet silicates by computer simulation Amer. Mineral. 75 276288.Google Scholar
Hillier, S. and Velde, B., 1991 Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites Clay Miner. 26 149168 10.1180/claymin.1991.026.2.01.CrossRefGoogle Scholar
Hughes, C. R., Young, T. P. and Taylor, W. E. G., 1989 The application of analytical transmission electron microscopy to the study of oolitic ironstones: A preliminary study Phanerozoic Ironstones London Geological Society Special Publication No. 46, The Geological Society 121131.Google Scholar
Iijima, A. and Matsumoto, R., 1982 Berthierine and chamosite in coal measures of Japan Clays & Clay Minerals 30 264274 10.1346/CCMN.1982.0300403.CrossRefGoogle Scholar
Iijima, S. and Zhu, J., 1982 Electron microscopy of amuscovite-biotite interface Amer. Mineral. 67 11951205.Google Scholar
Jahren, J. S. and Aagaard, P., 1989 Compositional variations in diagenetic chlorites and illites, and relationships with formation-water chemistry Clay Miner. 24 157170 10.1180/claymin.1989.024.2.04.CrossRefGoogle Scholar
James, R. S., Turnock, A. C. and Fawcett, J. J., 1976 The stability and phase relations of iron chlorite below 8.5 kb PH2O Contr. Mineral. Petr. 56 125 10.1007/BF00375418.CrossRefGoogle Scholar
Jiang, W.-T. and Peacor, D. R., 1991 Transmission electron microscopic study of the kaolinitization of muscovite Clays & Clay Minerals 39 113 10.1346/CCMN.1991.0390101.CrossRefGoogle Scholar
Jiang, W.-T. Peacor, D. R., Merriman, R. J. and Roberts, B., 1990 Transmission and analytical electron microscopic study of mixed-layer illite/smectite formed as an apparent replacement product of diagenetic illite Clays & Clay Minerals 38 449468 10.1346/CCMN.1990.0380501.CrossRefGoogle Scholar
Kisch, H. J., Larsen, G. and Chilingar, G. V., 1983 Mineralogy and petrology of burial dia-genesis (burial metamorphism) and incipient metamorphism in clastic rocks Diagenesis in Sediments and Sedimentary Rocks, 2 New York Elsevier 289493.Google Scholar
Lee, J. H. and Peacor, D. R., 1983 Interlayer transitions in phyllosilicates of Martinsburg shale Nature 303 608609 10.1038/303608a0.CrossRefGoogle Scholar
Lister, J. S. and Bailey, S. W., 1967 Chlorite polytypism: IV. Regular two-layer structures Amer. Mineral. 52 16141631.Google Scholar
Maas, R., McCulloch, M. T., Campbell, I. H. and Coad, P. R., 1986 Sm-Nd and Rb-Sr dating of an Archean massive sulfide deposit: Kidd Creek, Ontario Geology 14 585588 10.1130/0091-7613(1986)14<585:SARDOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Morad, S., 1986 Mica-chlorite intergrowths in very low-grade metamorphosed sedimentary rocks from Norway Neues Jahrbuch Mineral. Abh. 154 271287.Google Scholar
Nelson, B. W. and Roy, R., 1958 Synthesis of the chlorites and their structural and chemical constitution Amer. Mineral. 43 707725.Google Scholar
Nunes, P. D. and Pyke, D. R., 1981 Time-stratigraphic correlation of the Kidd Creek orebody with volcanic rocks south of Timmins, Ontario, as inferred from zircon U-Pb ages Econ. Geol. 76 944951 10.2113/gsecongeo.76.4.944.CrossRefGoogle Scholar
Percival, J. A. and Krogh, T. E., 1983 U-Pb zircon geo-chronology of the Kapuskasing structural zone and vicinity in the Chapleau-Foleyet area, Ontario Can. J. Earth Sci. 20 830843 10.1139/e83-073.CrossRefGoogle Scholar
Roy, A. B., 1978 Evolution of slaty cleavage in relation to diagenesis and metamorphism: A study from the Hunsrückschiefer Geol. Soc. Amer. Bull. 89 17751785 10.1130/0016-7606(1978)89<1775:EOSCIR>2.0.CO;2.Google Scholar
Sharp, T. G., Otten, M. T. and Buseck, P. R., 1990 Serpentinization of phlogopite phenocrysts from a micaceous kimberlite Cont. Mineral. Petr. 104 530539 10.1007/BF00306662.CrossRefGoogle Scholar
Shau, Y.-H. Peacor, D. R. and Essene, E. J., 1990 Corrensite and mixed-layer chlorite/corrensite metabasalt from northern Taiwan: TEM/AEM, EPMA, XRD, and optical studies Cont. Mineral. Petr. 105 123142 10.1007/BF00678980.CrossRefGoogle Scholar
Slack, J. F. and Coad, P. R., 1989 Multiple hydrothermal and metamorphic events in the Kidd Creek volcanogenic massive sulphide deposit, Timmins, Ontario: Evidence from tourmalines and chlorites Can. J. Earth Sci. 26 694715 10.1139/e89-059.CrossRefGoogle Scholar
Slack, J. F., Jiang, W.-T. Peacor, D. R. and Okita, P. M., 1992 Hydrothermal and metamorphic berthierine from the Kidd Creek volcanogenic massive sulfide deposit, Timmins, Ontario Can. Mineral .Google Scholar
Taylor, K. G., 1990 Berthierine from the non-marine Wealdon (Early Cretaceous) sediments of south-east England Clay Miner. 25 391399 10.1180/claymin.1990.025.3.13.CrossRefGoogle Scholar
van der Pluijm, B. A. and Kaars-Sijpesteijn, C. H., 1984 Chlorite-mica aggregates: Morphology, orientation, development and bearing on cleavage formation in very low-grade rocks J. Struct. Geol. 6 399407 10.1016/0191-8141(84)90040-3.CrossRefGoogle Scholar
Veblen, D. R., 1983 Microstructures and mixed layering in intergrown wonesite, chlorite, talc, biotite, and kaolinite Amer. Mineral. 68 566580.Google Scholar
Veblen, D. R. and Ferry, J. M., 1983 A TEM study of the biotite-chlorite reaction and comparison with petrologic observations Am. Mineral. 68 11601168.Google Scholar
Velde, B., 1973 Phase equilibria in the system MgO-Al2O3-SiO2-H2O: Chlorites and associated minerals Mineral. Mag. 39 297312 10.1180/minmag.1973.039.303.06.CrossRefGoogle Scholar
Velde, B., 1985 Clay Minerals: A Physico-Chemical Explanation of Their Occurrence Amsterdam Elsevier.Google Scholar
Velde, B., Young, T. P. and Taylor, W. E. G., 1989 Phyllosilicate formation in berthierine peloids and iron oolites Phanerozoic Ironstones London, Spec. Publ. No. 46 The Geological Society 38.Google Scholar
Velde, B., Raoult, J. F. and Leikine, M., 1974 Metamorphosed berthierine pellets in Mid-Cretaceous rocks from northeastern Algeria J. Sediment. Petrol. 44 12751280.Google Scholar
Walker, J. R. and Thompson, G. R., 1990 Structural variations in chlorite and illite in a diagenetic sequence from the Imperial Valley, California Clays & Clay Minerals 38 315321 10.1346/CCMN.1990.0380311.CrossRefGoogle Scholar
Walker, R. R., Matulich, A., Amos, A. C., Watkins, J. J. and Mannard, G. W., 1975 The geology of the Kidd Creek mine Econ. Geol. 70 8089 10.2113/gsecongeo.70.1.80.CrossRefGoogle Scholar
Weaver, C. E., 1989 Clays, Muds, and Shales Amsterdam Elsevier.Google Scholar
Woodland, B. G., 1985 Relationship of concretions and chlorite-muscovite porphyroblasts to the development of dominant cleavage in low-grade metamorphic deformed rocks from north-central Wales, Great Britain J. Struc. Geol. 7 205215 10.1016/0191-8141(85)90132-4.CrossRefGoogle Scholar
Worden, R. H., Droop, G T R and Champness, P. E., 1991 The reaction antigorite → olivine + talc + H2O in the Bergell aureole, N. Italy Mineral. Mag. 55 367377 10.1180/minmag.1991.055.380.07.CrossRefGoogle Scholar
Yau, Y. C., Anovitz, L. M., Essene, E. J. and Peacor, D. R., 1984 Phlogopite-chlorite reaction mechanisms and physical conditions during retrograde reactions in the Marble Formation, Franklin, New Jersey Contr. Mineral. Petr. 88 299306 10.1007/BF00380175.CrossRefGoogle Scholar
Young, T. P., Young, T. P. and Taylor, W. E. G., 1989 Phanerozoic ironstones: An introduction and review Phanerozoic Ironstones London Geological Society Special Publication No. 46, The Geological Society ixxxv.Google Scholar