Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T21:59:26.914Z Has data issue: false hasContentIssue false

Kaolinite Synthesis: The Role Of The Si/Al And (Alkali)/(H+) Ratio In Hydrothermal Systems

Published online by Cambridge University Press:  01 July 2024

Dennis Eberl*
Affiliation:
Department of Geology, Northern Illinois University, DeKalb, IL 60115, U.S.A.
John Hower
Affiliation:
Department of Geology, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
*
*Current address: Geology Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Si/Al ratio of an hydrothermal system plays an important role in kaolinite synthesis. If the atomic Si/Al ratio of a system is greater than 2-0, kaolinite will disappear at 345 + 5°C and 2 kbars water pressure according to the reaction kaolinite + 2 quartz → pyrophyllite + H2O. If the atomic Si/Al ratio is less than 2-0, however, kaolinite will persist until 405°C where it will react according to the equation 2 kaolinite pyrophyllite + 2 boehmite + 2 H2O. The Si/Al ratio of the system and temperature are also factors in determining whether b-axis ordered or disordered kaolinite will crystallize. The ordered variety is favored by a lower Si/Al ratio and a higher temperature than is the disordered form.

Hydrothermal experiments also show that kaolinite can be synthesized at 150°C and 5 bars pressure in distilled water from amorphous starting materials. Previous investigators were unsuccessful in forming kaolinite under these conditions because their systems were contaminated with alkalis.

Attempts to synthesize halloysite and dickite failed, but halloysite was converted to kaolinite at 150°C, suggesting that halloysite can be synthesized only at low temperatures.

Type
Research Article
Copyright
Copyright © 1975, The Clay Minerals Society

References

Althuas, E., (1956) Die Bildung von Pyrophyllit and Anda-lusit zwischen 2000 und 7000 bar H2O-Miruck Naturwissenschaften 53 105106.CrossRefGoogle Scholar
Altschuler, Z. S. Dwornik, E. J. and Kramer, H., (1963) Transformation of montomorillonite to kaolinite during weathering Science 141 148152.CrossRefGoogle Scholar
Aramaki, S. and Roy, R., (1963) A new polymorph of Al2SiO5 and further studies in the system A12O3-SiO2-H2O Am. Miner. 48 13221347.Google Scholar
Brindley, G. W. and De Kimpe, C. R., (1961) Attempted low-temperature synthesis of kaolin minerals Nature, Lond. 190 254.CrossRefGoogle Scholar
Brown, G., (1961) The X-ray Identification and Crystal Structure of Clay Minerals London Mineralogical Society 544.Google Scholar
Carr, R. M., (1963) Synthesis fields of some aluminum silicates; further studies Geochim. Cosmochim. Acta 27 133135.CrossRefGoogle Scholar
Carr, R. M. and Fyfe, W. S., (1960) Synthesis fields of some aluminum silicates Geochim. Cosmochim. Acta 21 99109.10.1016/S0016-7037(60)80005-1CrossRefGoogle Scholar
De Kimpe, C. R., (1967) Hydrothermal ageing of synthetic alumine-silicate gels Clay Minerals 7 203224.CrossRefGoogle Scholar
De Kimpfe, C. R., (1969) Crystallization of kaolinite at low temperatures from an aluminosilicic gel Clays and Clay Minerals 17 3738.CrossRefGoogle Scholar
De Kimpe, C. R. Gastuche, M. C. and Brindley, G. W., (1961) Ionic coordination in aluminosilicic gels in relation to clay mineral formation Am. Miner. 46 13701381.Google Scholar
De Kimpfe, C. R. and Fripiat, J. J., (1968) Kaolinite crystallization from H-exchanged zeolites Am. Miner. 53 216230.Google Scholar
Eberl, D., (1971) Experimental diagenetic reactions involving clay minerals 145.Google Scholar
Ewell, R. H. and Insley, H., (1935) Hydrothermal synthesis of kaolinite, dickite, beidellite and nontronite J. Research Nat. Bur. Standards 15 173.10.6028/jres.015.006CrossRefGoogle Scholar
Helgeson, H. C. Brown, T. H. and Leeper, R. H., (1969) Handbook of Theoretical Activity Diagrams Depicting Chemical Equilibria in Geologic Systems Involving an Aqueous Phase at One Atm and 0° to 300°C San Francisco Freeman, Cooper 253.Google Scholar
Hemley, J. J. and Jones, W. R., (1964) Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism Econ. Geol. 59 538569.CrossRefGoogle Scholar
Hem, J. D. Roberson, C. E. Lind, C. J. and Polzer, W. L., (1973) U.S. Geol. Surv. Water Supply Pap. 1827-E .Google Scholar
Hem, J. D. and Lind, C. J., (1974) Kaolinite synthesis at 25°C Science 184 11711173.CrossRefGoogle Scholar
Huang, W. H. and Keller, W. D., (1970) Dissolution of rockforming minerals in organic acids Am. Miner. 55 20762094.Google Scholar
Keller, W. D., (1963) Hydrothermal kaolinization (endellization) of volcanic glassy rock Clays and Clay Minerals 10th Conf. 333343.Google Scholar
Keller, W. D., (1970) Environmental aspects of clay minerals J. Sedim. Petrol. 40 788813.10.1306/74D720A4-2B21-11D7-8648000102C1865DCrossRefGoogle Scholar
Keller, W. D. and Hanson, R. F., (1968) Hydrothermal alteration of a rhyolite flow breccia near San Luis Potosi, Mexico, to refractory kaolin Clays and Clay Minerals 16 223230.CrossRefGoogle Scholar
Kittrick, J. A., (1970) Precipitation of kaolinite at 25°C and 1 atmosphere Clays and Clay Minerals 18 261267.10.1346/CCMN.1970.0180504CrossRefGoogle Scholar
Krauskopf, K. B., (1967) Introduction to Geochemistry New York McGraw-Hill 721.Google Scholar
Linares, J. and Huertas, F., (1971) Kaolinite synthesis at room temperature Science 171 896897.CrossRefGoogle ScholarPubMed
Luth, W. C. and Ingamells, C. O., (1965) Gel preparation of starting materials for hydrothermal experimentation Am. Miner. 50 255260.Google Scholar
Murray, H. H. and Lyons, S. C., (1956) Correlations of paper-coating quality with degree of crystal perfection of kaolinite Clays and Clay Minerals, Nat. Acad. Sci.—Nat. Res. Council 456 3140.Google Scholar
Parham, W. E., (1969) Formation of halloysite from feldspar: low temperature, artificial weathering versus natural weathering Clays and Clay Minerals 17 1322.10.1346/CCMN.1969.0170104CrossRefGoogle Scholar
Polzer, W. L. Hem, J. D. and Gabe, H. J., (1967) Formation of crystalline hydrous aluminosilicates in aqueous solutions at room temperature Geological Survey Prof. 575-B 128132.Google Scholar
Reynolds, R. C. Jr. and Hower, J., (1970) The nature of interlayering in mixed-layer illite-montmorillonites Clays and Clay Minerals 18 2536.10.1346/CCMN.1970.0180104CrossRefGoogle Scholar
Roy, R. and Osborn, E. F., (1954) The system A12O3-SiO2-H2O Am. Miner. 39 853885.Google Scholar
Sand, L. B., (1956) On the genesis of residual kaolins Am. Miner. 41 2840.Google Scholar
Schroeder, , and Hays, , (1967) Dickite and kaolinite in Pennsylvania limestones of S. E. Kansas [abs.]: 16th Clay Mineral Conf. Denver, 29.Google Scholar
Thompson, A. B., (1970) A note on the kaolinite-pyrophyl-lite equilibrium Am. J. Sci. 268 454458.10.2475/ajs.268.5.454CrossRefGoogle Scholar
Velde, B. and Kornprobst, J., (1969) Stabilité des silicates d'alumine hydrates Contrib. Miner. Petrol 21 6374.10.1007/BF00377418CrossRefGoogle Scholar
Winkler, H. G. F., (1957) Experimentelle Gesteinmetamorphose; 1 Geochim. Cosmochim. Acta 13 4269.CrossRefGoogle Scholar
Winkler, H. G. F., (1967) Petrogenesis of Metamorphic Rocks .CrossRefGoogle Scholar