Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T15:39:40.317Z Has data issue: false hasContentIssue false

Formation of Nontronite from Oxidative Dissolution of Pyrite Disseminated in Precambrian Felsic Metavolcanics of the Southern Iberian Massif (Spain)

Published online by Cambridge University Press:  01 January 2024

J. C. Fernández-Caliani*
Affiliation:
Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva, Spain
E. Crespo
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
M. Rodas
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
J. F. Barrenechea
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
F. J. Luque
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper describes a rare occurrence of nontronite associated with sulfide-bearing felsic metavolcanics, providing evidence of colloidal deposition in open spaces as result of a low-temperature water-rock interaction. Microbotryoidal masses of green nontronite with impurities of kaolinite, illite, barite, amorphous silica and iron oxyhydroxides are found as vein and cavity fillings in deeply kaolinized rhyolites and rhyolitic tuffs of Precambrian age, at Oliva de Merida in SW Spain. Clay mineral characterization has been carried out by X-ray diffraction, infrared spectroscopy, thermal analysis, analytical electron microscopy and stable isotope (oxygen and hydrogen) analysis. Nontronite was formed under low-temperature alteration conditions, from a continuous sequence of reactions and aqueous solution compositions, involving two basic processes that acted in concert: oxidative dissolution of pyrite and hydrolysis of K-feldspar. After acidity neutralization, dissolved silica released by incongruent dissolution of K-feldspar reacted with ferric sulfate derived from pyrite oxidation to form nontronite under oxidizing conditions, in the presence of relatively warm meteoric water.

Type
Research Article
Copyright
Copyright © 2004, The Clay Minerals Society

References

Alley, R.B. Cuffey, K.M., Valley, J.W. and Cole, D.R., (2001) Oxygen and hydrogen isotopic ratios of water in precipitation: Beyond Paleothermometry Stable Isotope Geochemistry Washington, D.C. Mineralogical Society of America 527553 10.1515/9781501508745-012.CrossRefGoogle Scholar
Bender-Koch, C. Morup, S. Madsen, M.B. and Vistisen, L., (1995) Iron-containing weathering products of basalt in a cold, dry climate Chemical Geology 122 109119 10.1016/0009-2541(95)00002-4.CrossRefGoogle Scholar
Blum, A.E. Stillings, L.L., White, A.F. and Brantley, S.L., (1995) Feldspar dissolution kinetics Chemical Weathering Rates of Silicate Minerals Washington, D.C. Mineralogical Society of America 291351 10.1515/9781501509650-009.CrossRefGoogle Scholar
Borthwick, J. and Harmon, R.S., (1982) A note regarding ClF3 as an alternative to BrF5 for oxygen isotope analysis Geochimica et Cosmochimica Acta 46 16651668 10.1016/0016-7037(82)90321-0.CrossRefGoogle Scholar
Brigatti, M.F., (1983) Relationships between composition and structure in Fe-rich smectites Clay Minerals 18 177186 10.1180/claymin.1983.018.2.06.CrossRefGoogle Scholar
Clayton, R.N. and Mayeda, T.D., (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis Geochimica et Cosmochimica Acta 27 4352 10.1016/0016-7037(63)90071-1.CrossRefGoogle Scholar
Cole, T.G. and Shaw, H.F., (1983) The nature and origin of authigenic smectites in some recent marine sediments Clay Minerals 18 239252 10.1180/claymin.1983.018.3.02.CrossRefGoogle Scholar
Craig, H., (1961) Isotopic variations in meteoric waters Science 133 17021703 10.1126/science.133.3465.1702.CrossRefGoogle ScholarPubMed
Decarreau, A. Bonnin, D. Badaut-Trauth, D. Couty, R. and Kaiser, P., (1987) Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions Clay Minerals 22 207223 10.1180/claymin.1987.022.2.09.CrossRefGoogle Scholar
Deer, W.A. Howie, R.A. and Zussman, J., (1992) An Introduction to the Rock-Forming Minerals 2nd Essex, UK Longmans.Google Scholar
Delgado, A. and Reyes, E., (1996) Oxygen and hydrogen isotope compositions in clay minerals: A potential single-mineral geothermometer Geochimica et Cosmochimica Acta 60 42854289 10.1016/S0016-7037(96)00260-8.CrossRefGoogle Scholar
Ding, Z. and Frost, R.L., (2002) Controlled rate thermal analysis of nontronite Thermochimica Acta 389 185193 10.1016/S0040-6031(02)00059-X.CrossRefGoogle Scholar
Eguiluz, L. Fernández, J. Garrote, A. Liñán, E. and Quesada, C., (1984) Sucesiones estratigráficas del anticlinorio Olivenza-Monesterio en la transversal Montemolín-Arroyomolinos Cuadernos Laboratorio Xeolóxico Laxe 8 117123.Google Scholar
Frost, R.L. Kloprogge, J.T. and Ding, Z., (2002) Near-infrared spectroscopy study of nontronites and ferruginous smectites Spectrochimica Acta Part A — Molecular and Biomolecular Spectroscopy 58 16571668 10.1016/S1386-1425(01)00637-0.CrossRefGoogle Scholar
Gibbons, W. Moreno, T., Gibbons, W. and Moreno, T., (2002) Introduction and overview The Geology of Spain London The Geological Society 16.Google Scholar
Godfrey, J.D., (1962) The deuterium content of hydrous minerals from the East Central Sierra Nevada and Yosemite National Park Geochimica et Cosmochimica Acta 26 12151245 10.1016/0016-7037(62)90053-4.CrossRefGoogle Scholar
Goodman, B.A. Russell, J.D. Fraser, A.R. and Woodhams, F.W.D., (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite Clays and Clay Minerals 24 5359 10.1346/CCMN.1976.0240201.CrossRefGoogle Scholar
Güven, N. and Bailey, S.W., (1988) Smectites Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical Society of America 497559 10.1515/9781501508998-018.CrossRefGoogle Scholar
Harder, H., (1976) Nontronite synthesis at low temperatures Chemical Geology 18 169180 10.1016/0009-2541(76)90001-2.CrossRefGoogle Scholar
Huang, W.H. and Keller, W.D., (1972) Geochemical mechanics for the dissolution, transport, and deposition of aluminium in the zone of weathering Clays and Clay Minerals 20 6974 10.1346/CCMN.1972.0200203.CrossRefGoogle Scholar
IGME — Instituto Geológico y Minero de España, Memoria de la Hoja Geológica n° 804 (Oliva de Mérida) a escala 1:50,000 (1988) 59 pp.Google Scholar
Juniper, S.K. Tebo, M. and Karl, D.M., (1995) Microbe-metal interactions and mineral deposition at hydrothermal vents The Microbiology of Deep-Sea Hydrothermal Vents New York CRC Press 219253.Google Scholar
Keeling, J.L. Raven, M.D. and Gates, W.P., (2000) Geology and characteriz ation of two hy drothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia Clays and Clay Minerals 48 537548 10.1346/CCMN.2000.0480506.CrossRefGoogle Scholar
Köhler, B. Singer, A. and Stoffers, P., (1994) Biogenic nontronite from marine white smoker chimneys Clays and Clay Minerals 42 689701 10.1346/CCMN.1994.0420605.CrossRefGoogle Scholar
Köster, H.M. Ehrlicher, U. Gilg, H.A. Jordan, R. Murad, E. and Onnich, K., (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites Clay Minerals 34 579599 10.1180/000985599546460.CrossRefGoogle Scholar
Kyser, T.K. and Kyser, T.K., (1987) Equilibrium fractionation factors for stable isotopes Stable Isotope Geochemistry of Low Temperature Fluids Toronto Mineralogical Association of Canada 184.Google Scholar
Mizutani, T. Fukushima, Y. Okada, A. Kamigaito, O. and Kobayashi, T., (1991) Synthesis of 1:1 and 2:1 iron phyllosilicates and characterization of their iron state by Mössbauer spectroscopy Clays and Clay Minerals 39 381386 10.1346/CCMN.1991.0390407.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 378 pp.Google Scholar
Murnane, R. and Clague, D.A., (1983) Nontronite from a low-temperature hydrothermal system on the Juan de Fuca Ridge Earth and Planetary Science Letters 65 343352 10.1016/0012-821X(83)90172-3.CrossRefGoogle Scholar
Nicholson, R.V., Blowes, D.W. and Jambor, J.L., (1994) Iron-sulfide oxidation mechanisms: laboratory studies The Environmental Geochemistry of Sulfide Mine-Wastes Toronto Mineralogical Association of Canada 163183.Google Scholar
Paktunc, A.D. and Azcue, J.M., (1999) Characterization of mine wastes for prediction of acid mine drainage Environmental Impacts of Mining Activities Berlin Springer 1940 10.1007/978-3-642-59891-3_3.CrossRefGoogle Scholar
Petit, S. Caillaud, J. Righi, D. Madejová, J. Elsass, F. and Köster, H.M., (2002) Characterization and crystal chemistry of an Fe-rich montmorillonite from Ölberg, Germany Clay Minerals 37 283297 10.1180/0009855023720034.CrossRefGoogle Scholar
Quesada, C., D’Lemos, R.S. Strachan, R.A. and Topley, C.G., (1990) Precambrian successions in SW Iberia: their relationship to Cadomian orogenic events The Cadomian Orogeny London Geological Society 353362.Google Scholar
Reyes, A.G. and Read, S., (2002) Nontronite formation in rhyolitic ignimbrite Geochimica et Cosmochimica Acta 66 15A 1 A635, Suppl..Google Scholar
Russell, J.D. Fraser, A.R. and Wilson, M.J., (1994) Infrared methods Clay Mineralogy: Spectroscopic and Chemical Determinative Methods London Chapman & Hall 1167 10.1007/978-94-011-0727-3_2.CrossRefGoogle Scholar
Savin, S.M. and Epstein, S., (1970) The oxygen and hydrogen isotope geochemistry of clay minerals Geochimica et Cosmochimica Acta 34 2542 10.1016/0016-7037(70)90149-3.CrossRefGoogle Scholar
Shenk, K. and Armbruster, T., (1985) Beidellite-nontronite, an alteration product of cordierite in the rhyolite from Torniella (Tuscany, Italy) Neues Jahrbuch für Mineralogie Monatshefte 9 385395.Google Scholar
Sheppard, S.M.F. and Gilg, H.A., (1996) Stable isotope geochemistry of clay minerals Clay Minerals 31 124 10.1180/claymin.1996.031.1.01.CrossRefGoogle Scholar
Singer, A. and Stoffers, P., (1987) Mineralogy of a hydrothermal sequence in a core from the Atlantis II Deep, Red Sea Clay Minerals 22 251267 10.1180/claymin.1987.022.3.01.CrossRefGoogle Scholar
Singer, A. Stoffers, P. Heller-Kallai, L. and Szafranek, D., (1984) Nontronite in a deep-sea core from the South Pacific Clays and Clay Minerals 32 375383 10.1346/CCMN.1984.0320505.CrossRefGoogle Scholar
Ueshima, M. and Tazaki, K., (2001) Possible role of microbial polysaccharides in nontronite formation Clays and Clay Minerals 49 292299 10.1346/CCMN.2001.0490403.CrossRefGoogle Scholar