Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T17:41:52.840Z Has data issue: false hasContentIssue false

Fe-Smectite-Glauconite Transition in Hydrothermal Green Clays from the Galapagos Spreading Center

Published online by Cambridge University Press:  02 April 2024

Martine Buatier
Affiliation:
Centre de Sédimentologie et de Géochimie de la Surface, CNRS, 1 rue Blessig, 67084 Strasbourg, France
Jose Honnorez
Affiliation:
Centre de Sédimentologie et de Géochimie de la Surface, CNRS, 1 rue Blessig, 67084 Strasbourg, France
Gabrielle Ehret
Affiliation:
Centre de Sédimentologie et de Géochimie de la Surface, CNRS, 1 rue Blessig, 67084 Strasbourg, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray powder diffraction (XRD) and energy-dispersive X-ray analyses (EDX) of individual clay particles from hydrothermal mounds in the Galapagos spreading center (GSC) (Deep Sea Drilling Project, hole 509B) and high-resolution transmission electron microscopy (HRTEM) of the <2-µm size fraction of these sediments were carried out to document the mineralogy, geochemistry, and evolution of their clay horizons. The hydrothermal clay minerals of the GSC mounds were found to be intercalated with pelagic sediments and occurred as irregular interstratified illite/smectite according to X-ray powder diffraction analyses. On the basis of TEM, HRTEM, and EDX data, two types of clays appeared to coexist; these types differed in morphology, potassium content, and mode of stacking sequence. Lath-shaped particles having regular 10-Å, spacings were identified as glauconite, and filmy or veil-like particles, having curly edges and variable 10-13-Å spacings were identified as Fe-smectite (nontronite and Fe-montmorillonite). The absence of lattice fringes between Fe-smectite and glauconite crystallites was observed by HRTEM in clay aggregates. This structural discontinuity between Fe-smectite and glauconite layers suggests that a dissolution-recrystallization mechanism was responsible for the textural and chemical transition from the filmy Fe-smectite to the lath-like glauconite.

Type
Research Article
Copyright
Copyright © 1989, The Clay Minerals Society

References

Ahn, J. H. and Peacor, D. R., 1986 Transmission and analytical electron microscopy of the smectite-to-illite transition Clays & Clay Minerals 34 165179.Google Scholar
Ahn, J. H. and Peacor, D. R., 1986 Transmission electron microscope data for rectorite: Implication for the origin and structure of “fundamental particles” Clays & Clay Minerals 34 180186.Google Scholar
Amouric, M. and Parron, C., 1985 Structure and growth mechanism of glauconite as seen by high-resolution transmission electron microscopy Clays & Clay Minerals 33 473482.CrossRefGoogle Scholar
Bailey, S. W., Brindley, G. W., Fanning, D. S., Kodama, H. and Martin, R. T., 1984 Report of The Clay Minerals Society Nomenclature Committee for 1982and 1983 Clays & Clay Minerals 32 239240.CrossRefGoogle Scholar
Becker, K., Von Herzen, R. P., Karato, S., Honnorez, J. and Von Herzen, J., 1983 Geothermal measurements from drilling of sediments near the Galapagos Spreading Center 86°W, D.S.D.P. leg 70 I nit. Repts. Deep Sea Drilling Project Washington, D.C. U.S. Govt. Printing Office 445458.Google Scholar
Bender, M. L., 1983 Pore water chemistry of the Mounds Hydrothermal Field, Galapagos Spreading Center. Results from Glomar Challenger piston coring J. Geoph. Res. 88 10491056.CrossRefGoogle Scholar
Buatier, M., Clauer, N., Honnorez, J. and O’Neil, J. M., 1988 A genetic model for hydrothermal Fe-rich clay minerals from Galapagos Spreading Center mounds: XRD, HRTEM, STEM, and isotopie data Denver GSA meeting, Abstract with programs.Google Scholar
Ehret, G., Crovisier, J. L. and Eberhart, J. P., 1986 Anew method studying leached glasses: Analytical electron microscopy on ultramicrotomic thin sections J. Non-Cryst. Solids 86 7279.CrossRefGoogle Scholar
Foster, M., 1960 Interpretation of the composition of tri-octahedral micas U.S. Geol. Surv. Prof. Pap. 354 1150.Google Scholar
Foster, M., 1969 Studies of celadonite and glauconite U.S. Geol. Surv. Prof. Paper 614 117.Google Scholar
Hendricks, S. B. and Teller, E., 1942 X-ray interference in partially ordered layer lattices J. Chem. Phys. 10 147167.CrossRefGoogle Scholar
HofFert, M., Person, A., Courtois, C., Karpoff, A. M. and Trauth, D., 1980 Sedimentology, mineralogy and geochemistry of hydrothermal deposits from holes 424, 424A, 424B, and 424C (Galapagos Spreading Center) Init. Repts. Deep Sea Drilling Project 54 339376.Google Scholar
Holtzapffel, T., Bonnot-Courtois, C., Chamley, H. and Clauer, N., 1985 Héritage et diagenèse des smectites du domaine sédimentaire nord-Atlantique (Crétacé, Paléocène) Bull. Soc. Géol. France 1 2533.CrossRefGoogle Scholar
Honnorez, J., Karpoffi, A. M., Trauth Badaut, D et al. , Honnorez, J. and Von Herzen, R. P. 1983 et al. , Sedimentology, mineralogy and geochemistry of green clay samples from the Galapagos hydrothermal mounds, holes 506, 506C, and 507D Deep Sea Drilling Project leg 70 Init. Repts. Deep Sea Drilling Project Washington, D.C. U.S. Govt. Printing Office 221224.Google Scholar
Honnorez, J., Von Herzen, R. P., Barret, T. J., Becker, K., Bender, M. L., Bender, P. E., Borella, P. E., Hubberten, H. W., Jones, S. C., Karato, S. I., Laverne, C., Levi, S., Mig-disov, A. A., Moorby, S. A. and Schrader, E. L., 1981 Hydrothermal mounds and young ocean crust of the Galapagos: Preliminary Deep Sea Drilling results, leg 70 Geol. Soc. Amer. Bull. 92 457472.2.0.CO;2>CrossRefGoogle Scholar
Hower, J., 1961 Some factors concerning the nature and origin of glauconite Amer. Mineral. 46 313334.Google Scholar
Inoue, A., Koyama, N., Kitagawa, R. and Watanabe, T., 1987 Chemical and morphological evidence for the conversion of smectite to illite Clays & Clay Minerals 35 111120.CrossRefGoogle Scholar
Klitgort, K. D. and Mudie, J. D., 1974 The Galapagos Spreading Center: A near bottom geophysical survey Geo-phys. J. Roy. Astron. Soc. 38 563586.CrossRefGoogle Scholar
Koster, H. M., van Olphen, H. and Veniale, F., 1982 The crystal structure of 2:1 layer silicates Proc. 7th Int. Clay Conf, Bologna, Pavia, 1981 Amsterdam Elsevier 4171.Google Scholar
Kurnosov, V. B., Chudaev, O. V. and Shevchenko, A. Y., 1983 Mineralogy and geochemistry of sediments from Galapagos hydrothermal mounds leg 70, Deep Sea Drilling Project Init. Repts. Deep Sea Drilling Project 70.CrossRefGoogle Scholar
Honnorez, R. P. Von Herzen, et al, eds., U.S. Govt. Printing Office, Washington, D.C., 225229.Google Scholar
Lalou, C., Brichet, E., Jehanno, C. and Perez-Leclaire, H., 1983 Hydrothermal manganese deposits from Galapagos mounds, D.S.D.P. leg 70, hole 509B and Alvin 3 dives 729 and 721 Earth Planet Sci. Lett. 63 6375.CrossRefGoogle Scholar
Lee, J. H., Ahn, J. H. and Peacor, D. R., 1985 Textures in layered silicates: Progressive changes through diagenesis and low temperature metamorphism J. Sed. Petrol. 55 532540.Google Scholar
Mossman, J. R., 1987 Conditions physico-chimiques d’évolution de réservoirs gréseux. Approche pétrologique, minéralogique et isotopique. Application aux grès rhétiens du bassin de Paris Strasbourg, France Thèse de l’Université Louis Pasteur de Strasbourg.Google Scholar
Paquet, H., Duplay, J., Valleron-Blanc, M. M., Millot, G., Schultz, L. G., van Olphen, H. and Mumpton, F. A., 1987 Octahedral compositions of individual particles in smectite-palygorskite and smectite-sepiolite assemblages Proc. Int. Clay Conf, Denver, 1985 Indiana The Clay Mineral Society, Bloomington 7377.Google Scholar
Rinckenbach, T., 1988 Diagenese minérale des sédiments pétrolifères du delta fossile de la Mahakam (Indonésie). Evolution minéralogique et isotopique des composants argileux et histoire thermique Strasbourg, France Thèse de l’Université Louis Pasteur de Strasbourg.Google Scholar
Samuel, J., Rouault, R. and Besnus, Y., 1985 Analyse multiélémentaire standardisée des matériaux géologiques en spectrométrie d’émission par plasma à couplage inductif Analusis 13 312317.Google Scholar
Tessier, D., 1984 Hydration, gonflement et structuration des matériaux argileux au cours de dessication et de ré-humectation France Thesis Paris INRA Versailles, Versailles.Google Scholar
Thompson, G. R. and Hower, J., 1975 The mineralogy of glauconite Clays & Clay Minerais 23 289300.CrossRefGoogle Scholar
Tixier, R., Maurice, S., Meny, L. and Tixier, R., 1978 Microanalyse sur échantillons minces Microanalyse et Microscope à Balayage. Les éditions de physique France Orsay 433448.Google Scholar
Varentsov, I. M., Sakharov, B. A., Drits, V. A., Tsipursky, S. I., Choporov, D. Y., Aleksandrova, V. A., Honnorez, J. and Von Herzen, R. P., 1983 Hydrothermal deposits of the Galapagos rift zone, leg 70. Mineralogy and geochemistry of major component Init. Repts. Deep Sea Drilling Project Washington, D.C. U.S. Govt. Printing Office 235268.Google Scholar
Weaver, C. E. and Pollard, L. D., 1973 The Chemistry of Clay Minerals Amsterdam Elesvier.Google Scholar
Whitney, G. and Northrop, H. R., 1988 Experimental investigation of the smectite to illite reaction: Dual reaction mechanisms and oxygen isotope systematics Amer. Mineral. 73 7790.Google Scholar
Williams, D. L., Von Herzen, R. P., Sciate, J. G. and Anderson, R. N., 1974 The Galapagos Spreading Center: Lithospheric cooling and hydrothermal circulation Geo-phys. J. Roy Astron. Soc. 38 587608.CrossRefGoogle Scholar
Yau, Y. C., Peacor, D. R. and McDowell, S. D., 1987 Smectite-to-illite reactions in Salton Sea shales: A transmission and analytical electron microscopy study Sed. Petrol 57 335342.Google Scholar