Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T15:19:05.575Z Has data issue: false hasContentIssue false

Effects of the Nature of the Exchangeable Cation and Clay Concentration on the Rheological Properties of Smectite Suspensions

Published online by Cambridge University Press:  01 January 2024

C. Malfoy*
Affiliation:
Université de Poitiers, HydrASA, UMR 6532, 40 avenue du recteur Pineau, 86022 Poitiers, France
A. Pantet*
Affiliation:
Université de Poitiers, HydrASA, UMR 6532, 40 avenue du recteur Pineau, 86022 Poitiers, France
P. Monnet*
Affiliation:
Université de Poitiers, LEA, UMR 6609, Boulevard Marie et Pierre Curie, 86962 Futuroscope cedex, France
D. Righi
Affiliation:
Université de Poitiers, HydrASA, UMR 6532, 40 avenue du recteur Pineau, 86022 Poitiers, France
*
*E-mail address of corresponding author: [email protected]
Groupe Géomécanique et Génie Civil de Poitiers
Groupe Géomécanique et Génie Civil de Poitiers
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The rheological characteristics of purified bentonite suspensions as a function of exchangeable cation (Ca2+,NH4+,Li+)$({\rm{C}}{{\rm{a}}^{2 + }},{\rm{NH}}_4^ + ,\;{\rm{L}}{{\rm{i}}^ + })$ are studied at three different clay concentrations (40 gL−1, 60 gL−1, 80 gL−1). A Herschel-Bulkley model is used to determine rheological parameters such as yield value, consistency and fluidification index. The flow curves are typical for shear thinning fluids but differ on two points; presence of yield stress and/or thixotropy. The Li suspensions are not yield stress fluid, and the thixotropy is weakly expressed only for the 80 gL−1 suspension. On the contrary, Ca-clay suspension flow curves always present yield stress and a large thixotropic area. The NH4-clay suspensions exhibit an intermediate behavior as there is no thixotropy, but a yield stress appears for the most concentrated suspension. These differences in macroscopic mechanical properties are discussed with reference to the suggested microscopic clay organization in suspension.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

References

Besq, A., (2000) Ecoulements laminaires de suspensions de bentonites industrielles Caractérisation rhéométrique — Ecoulements en conduites axisymétriques. Applications aux activités du Génie Civil Poitiers, France Universite Poitiers PhD thesis.Google Scholar
Coussot, P.h., (1997) Mudflow, Mudflow Rheology and Dynamics Balkema The Netherlands Dordrecht 255 pp.Google Scholar
Coussot, P.h. and Ancey, C.h., (1999) Rheophysique des Pâtes et des Suspensions Les Ulis, France Edition Diffusion Press Sciences 257 pp.Google Scholar
Ecoclay Final report (2000) Effect of Cement on Clay Barrier Performance. Ecoclay project. European Commission Community Research, EUR 19609, 140 pp.Google Scholar
Edwards, D.G. Posner, A.M. and Quirk, J.P., (1965) Repulsion of chloride ions between negatively charged clay surfaces. Part 2 and Part 3 Transactions of the Faraday Society 61 28162819 10.1039/TF9656102816.Google Scholar
Guven, N. and Pollastro, R.M., (1992) Clay-Water Interface and its Rheological Implications Bloomington, Indiana Clay Mineral Society 245 pp.Google Scholar
Heller, H. and Keren, R., (2001) Rheology of Na-rich montmorillonite suspension as affected by electrolyte concentration and shear rate Clays and Clay Minerals 49 286291 10.1346/CCMN.2001.0490402.Google Scholar
Keren, R., (1988) Rheology of aqueous suspensions of sodium/calcium montmorillonite Soil Science Society of America Journal 52 924928 10.2136/sssaj1988.03615995005200040004x.Google Scholar
Keren, R., (1989) Effect of clay charge density and adsorbed ions on the rheology of montmorillonite suspensions Soil Science Society of America Journal 53 2529 10.2136/sssaj1989.03615995005300010005x.Google Scholar
Magnin, A. and Piau, J.M., (1990) Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel Journal of Non-Newtonian Fluids Mechanics 36 85108 10.1016/0377-0257(90)85005-J.CrossRefGoogle Scholar
Malfoy, C. Pantet, A. and Monnet, P., (2001) Impact du mode de malaxage et de la minéralogie sur le comportement mecanique des boues de bentonite Acte du 36èmecolloque du Groupe Francais de Rheologie .Google Scholar
McBride, M.B., (1994) Environmental Chemistry of Soils UK Oxford University Press 63120.Google Scholar
Morvan, M. Espinat, D. Lambard, J. and Zemb, T.h., (1994) Ultrasmall- and small-angle X-ray scattering of smectite clay suspensions Colloids and Surfaces A82 193203 10.1016/0927-7757(93)02656-Y.Google Scholar
Penner, D. and Lagaly, G., (2001) Influence of anions on the rheological properties of clay mineral dispersions Applied Clay Science 19 131142 10.1016/S0169-1317(01)00052-7.Google Scholar
Pignon, F. Magnin, A. and Piau, J.M., (1996) Processus de désagrégation dans des gels d’argiles thixotropes sous écoulement de cisaillement Les Cahiers de Rheologie XV 294300.Google Scholar
Ramsay, J.D.F. and Linder, P., (1993) Small-angle neutron scattering investigations of the structure of thixotropic dispersions of smectite clay colloids Journal of the Chemical Society. Faraday Transactions 89 23 42074214 10.1039/ft9938904207.Google Scholar
Sposito, G., (1984) The Surface Chemistry of Soils New York Oxford University Press 234 pp.Google Scholar
Tessier, D., (1984) Etude expérimentale de l’organisation des matériaux argileux Hydratation, gonflement et structuration au cours de la dessication et de la réhumectation France Université Paris VII INRA PhD thesis.Google Scholar
Tessier, D., De Boodt, M. Hayes, M. and Herbillon, A., (1990) Behaviour and microstructure of clay minerals Soil Colloids and their Associations in Aggregates New York Plenum Press 387414 10.1007/978-1-4899-2611-1_14.Google Scholar
Touret, O., (1988) Structure des argiles hydratees thermodynamique de la deshydratation et de la compaction des smectites France Universite Strasbourg PhD thesis.Google Scholar
Viseras, C. Meeten, G.H. and Lopez-Galindo, A., (1999) Pharmaceutical grade phyllosilicate dispersions: the influence of shear history on floc structure International Journal of Pharmaceutics 182 720 10.1016/S0378-5173(99)00075-7.Google Scholar