Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T16:49:40.272Z Has data issue: false hasContentIssue false

Effect of SiO2/Al2O3 Ratio on the Thermal Reactions of Allophane

Published online by Cambridge University Press:  01 July 2024

Teruo Henmi*
Affiliation:
Faculty of Agriculture, Ehime University, Matsuyama 790, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Differences were found in the differential thermal analysis curves and in the temperatures of new-phase development between allophanes of high (1.91–1.99) and low (1.47–1.53) SiO2/Al2O3 ratios. The endothermic peak due to continuous dehydration and dehydroxylation was at higher temperatures (153°-185°C) for allophanes with high SiO2/Al2O3 ratios and at lower temperatures (148°–165°C) for those with low SiO2/Al2O3 ratios. The temperature of the exothermic peak was lower and the height affected more by the exchangeable cation content for allophanes with high ratios than for those with low ratios. New phases did not develop in allophanes having high Si02/Al2O3 ratios even after they were heated to 1000°C, above the temperature of the exothermic peak. In contrast, a symptomatic development of new phases was noted in allophanes with low SiO2/Al2O3 ratios at 900°C, below the temperature of the exothermic peak. The effect of SiO2/Al2O3 ratio in the thermal behavior of allophane strongly suggests that differences in the structure are closely associated with the chemical composition of this material.

Резюме

Резюме

Были обнаружены различия в кривых дифференциального термического анализа и в температурах развития новой фазы между аллофанами высоких (1,91-1,99) и низких (1,47-1,53) отношений SiO2/А12O3. Эндотермический пик из-за постоянной дегидротации и дегидроксилиро-вания наблюдался при высоких температурах (153°–185°С) для аллофанов с высокими отношениями SiO2/Аl2O3 и при низких температурах (148°–165°С) для аллофанов с низкими отношениями SiO2/А12O3. Для аллофанов с высокими отношениями температура эндотермического пика была ниже и высота более обусловлена содержанием обменных катионов, чем для аллофанов с низкими отношениями. Новые фазы не развились в аллофанах с высокими отношениями §Ю2/А1203 даже после подогрева до 1000°С, выше температуры экзотермического пика. Наоборот, симптоматическое развитие новых фаз было замечено в аллофанах с низкими отношениями SiO2/Аl2O3 при 900°С, ниже температуры экзотермического пика. Влияние отношения SiO2/А12O3 на термическое поведение аллофанов указывает на то, что различия в структуре тесно связаны с химическим составом этого материала. [N. R.]

Resümee

Resümee

Bei den DTA-Kurven und bei den Bildungstemperaturen neuer Phasen wurden Unterschiede zwischen Allophanen mit hohen (1,91 bis 1,99) und niedrigen (1,47 bis 1,53) SiO2/Al2O3-Verhältnissen gefunden. Der endotherme Peak, verursacht durch die ständige Dehydrierung und Dehydroxylierung, war für Allophane mit hohem SiO2Al2O3-Verhältnis bei höheren Temperaturen (153° bis 195°C). Für Allophane mit niedrigem SiO2/Al2O3-Verhältnis war er bei niedrigeren Temperaturen (148° bis 165°C). Bei Allophanen mit großen Verhältniszahlen war die Temperatur des endothermen Peaks niedriger, und die Höhe mehr durch die austauschbaren Kationen beeinflußt, als bei solchen mit kleinen Verhältniszahlen. In Allophanen mit hohen SiO2/Al2O3-Verhältnissen wurden keine neuen Phasen gebildet, selbst wenn sie auf über 1000°C, über die Temperatur des exothermen Peaks, erhitzt wurden. Im Gegensatz dazu wurde bei Allophanen mit niedrigen SiO2/Al2O3-Verhältnissen die symptomatische Bildung neuer Phasen bei 900°C, unter der Temperatur des exothermen Peaks, beobachtet. Die Wirkung des SiO2/Al2O3-Verhältnisses auf das thermische Verhalten von Allophan legt die Annahme nahe, daß Unterschiede in der Struktur eng mit der chemischen Zusammensetzung dieses Materials zusammenhängen. [U. W.]

Résumé

Résumé

Des différences ont été trouvées dans les courbes d'analyse thermale différentielle et dans les températures de développement de nouvelle phase entre les allophanes aux proportion hautes (1,91–1,99) et basses (1,47–1,53) de SiO2/Al2O3. Le sommet endothermique dû à la déshydration et à la déshydroxy-lation continuelles était à des températures plus hautes (153°–185°C) pour des allophanes avec des proportions élevées de SiO2/Al2O3 et à de plus basses températures (148°–165°C) pour celles avec les proportions les plus basses. De nouvelles phases ne sont pas développées dans les allophanes ayant des proportions élevées de SiO2/Al2O3, même après échauffement à 1000°C, au-delà de la température du sommet exothermique. Par contraste, un développement symptomatique de nouvelles phases a été noté dans les allophanes ayant de basses proportions de SiO2/Al2O3 à 900°C, en dessous de la température du sommet exothermique. L'effet de la proportion de SiO2/Al2O3 dans le comportement thermal de l'allophane suggère fortement que les différences dans la structure sont associées de près avec la composition chimique de ce matériel. [D. J.]

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1980

References

Barshad, I. and Black, C. A., (1965) Thermal analysis techniques for mineral identification and mineralogical composition Methods of Soil Analysis, Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling 699742.CrossRefGoogle Scholar
Brindley, G. W. and Fancher, D., (1969) Kaolinite defect structure; possible relation to allophane Proc. Int. Clay Conf. 1969 2 2934.Google Scholar
Campbell, A. S. Mitchell, B. D. and Bracewell, J. M., (1968) Effect of particle size, pH and organic matter on the thermal analysis of allophane Clay Miner. 7 451454.CrossRefGoogle Scholar
Egawa, T., (1964) A study on coordination number of aluminum in allophane Clay Sci. 2 17.Google Scholar
Fieldes, M., (1955) Clay mineralogy of New Zealand soils, Part II: allophane and related mineral colloids N. Z. J. Sci. Technol. 37 336350.Google Scholar
Fieldes, M., (1957) Clay mineralogy of New Zealand soils, Part 4: differential thermal analysis N. Z. J. Sci. Technol. 38 533570.Google Scholar
Fieldes, M. Claridge, G. G. C. and Gieseking, J. E., (1975) Allophane Soil Components Vol. 2 Inorganic Components New York Springer-Verlag 351393.CrossRefGoogle Scholar
Henmi, T., (1977) The dependence of surface acidity on chemical composition (SiO2/Al2O3 molar ratio) of allophanes Clay Miner. 12 356358.CrossRefGoogle Scholar
Henmi, T. and Wada, K., (1976) Morphology and composition of allophane Amer. Miner. 61 379390.Google Scholar
Higashi, T. and Ikeda, H., (1974) Dissolution of allophane by acid oxalate solution Clay Sci. 4 205212.Google Scholar
Jackson, M. L., (1956) Dispersion of soil minerals Soil Chemical Analysis—Advanced Course 3195.Google Scholar
Jackson, M. L., (1956) Differential thermal analysis of soil minerals Soil Chemical Analysis—Advance Course 251329.Google Scholar
Kitagawa, Y., (1971) The “unit particle” of allophane Amer. Miner. 56 465475.Google Scholar
Mackenzie, R. C. and Mackenzie, R. C., (1970) Simple phyllosilicates based on gibbsite- and brucite-like sheets Differential Thermal Analysis Vol. I London Academic Press 498537.Google Scholar
Mackenzie, R. C. Mitchell, B. D. and Mackenzie, R. C., (1970) Technique Differential Thermal Analysis Vol. 1 London Academic Press 101122.Google Scholar
Mehra, O. P. and Jackson, M. L., (1960) Iron oxide removal from soils and clays by a dithionite-citrate system with sodium bicarbonate buffer Clays & Clay Minerals 7 317327.Google Scholar
Mitchell, B. D. Farmer, V. C. and McHardy, W. J., (1964) Amorphous inorganic materials in soils Adv. Agron. 16 327383.CrossRefGoogle Scholar
Miyauchi, N. and Aomine, S., (1966) Effect of exchangeable cations on the high temperature exothermic peak of allophane Soil Sci. Plant Nutr. 12 1317.CrossRefGoogle Scholar
Miyazawa, K., (1966) Clay mineral composition of andosoils in Japan—with reference to their classification Bull. Nat. Inst. Agr. Sci. 17 1100.Google Scholar
Okada, K. Morikawa, S. Iwai, S. Ohira, Y. and Ossaka, J., (1975) A structural model of allophane Clay Sci. 4 219303.Google Scholar
Ossaka, J., (1960) On the hydro-alumina silicate minerals from Mt. Asama Adv. Clay Sci. 2 339349.Google Scholar
Ossaka, J., (1961) On the mechanism of formation of precipitated allophane Adv. Clay Sci. 3 225233.Google Scholar
Ossaka, J., (1962) On the heat transformation of hydrated low crystalline materials from system SiO2-Al2O3 Adv. Clay Sci. 4 3347.Google Scholar
Shoji, S. and Saigusa, M., (1977) Amorphous clay materials of Towada Andosoils Soil Sci. Plant Nutr. 23 437455.CrossRefGoogle Scholar
Udagawa, S. Nakada, T. and Nakahira, M., (1969) Molecular structure of allophane as revealed by its thermal transformation Proc. Int. Clay Conf. (Tokyo) Vol. 1 .Google Scholar
Wada, K., Dixon, J. B. and Weed, S. B., (1977) Allophane and imogolite Minerals in Soil Environments 603638.Google Scholar
Wada, K., (1978) Structural formulas of allophanes Proc. Int. Clay Conf. (Oxford) 537545.Google Scholar
Wada, K. and Harward, M. E., (1974) Amorphous clay constituents of soils Adv. Agron. 26 211260.CrossRefGoogle Scholar
Wada, K. Henmi, T. Yoshinaga, N. and Patterson, S. H., (1972) Imogolite and allophane formed in saprolite of basalt on Maui, Hawaii Clays & Clay Minerals 20 375380.CrossRefGoogle Scholar
Wada, K. and Wada, S., (1976) Clay mineralogy of the B horizon of two Hydrandepts, a Torrox and a Humitropept in Hawaii Geoderma 16 139157.CrossRefGoogle Scholar
Wada, K. and Yoshinaga, N., (1969) The structure of imogolite Amer. Miner. 54 5071.Google Scholar
Wada, K. Yoshinaga, N. Yotsumoto, H. Ibe, K. and Aida, S., (1970) High resolution electron micrographs of imogolite Clay Miner. 8 487489.CrossRefGoogle Scholar
Wada, S. and Wada, K., (1977) Density and structure of allophane Clay Miner. 12 289298.CrossRefGoogle Scholar
Wells, N. Childs, C. W. and Downes, C. J., (1977) Silica spring, Tongariro national park, New Zealand—analyses of the spring water and characterization of the alumino-silicate deposit Geochem. Cosmochim. Acta 41 14971506.CrossRefGoogle Scholar
Yoshinaga, N., (1966) Chemical composition and some thermal data of eighteen allophanes from andosoils and weathered pumices Soil Sci. Plant Nutr. 12 4754.CrossRefGoogle Scholar
Yoshinaga, N. Yotsumoto, H. and Ibe, K., (1968) An electron microscopic study of soil allophane with an ordered structure Amer. Miner. 53 319323.Google Scholar