Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T15:30:00.745Z Has data issue: false hasContentIssue false

Dehydration and rehydration of palygorskite and the influence of water on the nanopores

Published online by Cambridge University Press:  01 January 2024

Wenxing Kuang
Affiliation:
Center for Catalysis Research and Innovation and Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
Glenn A. Facey
Affiliation:
Center for Catalysis Research and Innovation and Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
Christian Detellier*
Affiliation:
Center for Catalysis Research and Innovation and Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dehydration and rehydration processes of the clay mineral palygorskite (PFl-1) were studied by textural analysis, thermogravimetric analysis connected with mass spectrometry (TGA-MS), and 29Si and 1H solid-state NMR techniques. The TGA-MS results clearly reveal weight losses at maxima of 70°C, 190°C, 430°C and 860°C. PFl-1 is characterized by a micropore area of 93 m2/g, corresponding to a micropore volume of 47 mm3/g. These values are also obtained for the sample heated up to 200°C for 20 h. Further heating at 300°C produces a collapse of the structure, as shown by the almost complete loss of microporosity.

The 29Si NMR spectra of palygorskite show two main resonances at −92.0 and −97.5 ppm, attributed to one of the two pairs of equivalent Si nuclei in the basal plane. A minor resonance at −84.3 ppm is attributed to Q2(Si-OH) Si nuclei. The resonance at −92.0 ppm is assigned to the central Si position, while the resonance at −97.5 ppm is assigned to the edge Si sites. It is confirmed bysolid-state 29Si and 1H NMR that nearly complete rehydration is achieved by exposing palygorskite samples that have been partially dehydrated at 150°C and 300°C, to D2O or water vapor at room temperature. When the rehydration is accomplished with D2O, the atoms are disordered across all the protons sites.

Type
Research Article
Copyright
Copyright © 2004, The Clay Minerals Society

References

Artioli, G. and Galli, E., (1994) The crystal structures of orthorhombic and monoclinic palygorskite Materials Science Forum 166–169 647652 10.4028/www.scientific.net/MSF.166-169.647.Google Scholar
Artioli, G., Galli, E., Burattini, E., Cappuccio, G. and Simeoni, S. (1994) Palygorskite from Bolca, Italy: a characterization byhigh-resolution synchrotron radiation powder diffraction and computer modeling. Neues Jahrbuch für Mineralogie, Monatshefte, 217229.Google Scholar
Augsburger, M.S. Strasser, E. Perino, E. Mercader, R.C. and Pedregosa, J.C., (1998) FTIR and Mössbauer investigation of a substituted palygorskite: silicate with a channel structure Journal of Physics and Chemistry of Solids 59 175180 10.1016/S0022-3697(97)00166-2.Google Scholar
Barrer, R.M. and Mackenzie, N., (1954) Sorption by attapulgite. I. Availabilityof intracrystalline channels Journal of Physical Chemistry 58 560568 10.1021/j150517a013.Google Scholar
Barron, P.F. and Frost, R.L., (1985) Solid-state 29Si NMR examination of the 2:1 ribbon maganesium silicates, sepiolite and palygorskite American Mineralogist 70 758766.Google Scholar
Birsoy, R., (2002) Formation of sepiolite-palygorskite and related minerals from solution Clays and Clay Minerals 50 736745 10.1346/000986002762090263.Google Scholar
Borden, D. and Giese, R.F., (2001) Baseline studies of the Clay Minerals Societysource clays: cation exchange capacity measurements by the ammonia-electrode method Clays and Clay Minerals 49 444445 10.1346/CCMN.2001.0490510.Google Scholar
Bradley, W.F., (1940) The structural scheme of attapulgite American Mineralogist 25 405410.Google Scholar
Cases, J.M. Grillet, Y. Francois, M. Michot, L. Villieras, F. and Yvon, J., (1991) Evolution of the porous structure and surface area of palygorskite under vacuum thermal treatment Clays and Clay Minerals 39 191201 10.1346/CCMN.1991.0390211.Google Scholar
Chahi, A. Petit, S. and Decarreau, A., (2002) Infrared evidence of dioctahedral-trioctahedral site occupancyin palygorskite Clays and Clay Minerals 50 306313 10.1346/00098600260358067.Google Scholar
Chiari, G. Giustetto, R. and Ricchiardi, G., (2003) Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction European Journal of Mineralogy 15 2133 10.1127/0935-1221/2003/0015-0021.Google Scholar
Chipera, S.J. and Bish, D.L., (2001) Baseline studies of the Clay Minerals Societysource clays: powder X-raydiffraction analyses Clays and Clay Minerals 49 398409 10.1346/CCMN.2001.0490507.Google Scholar
Chisholm, J.E., (1990) An X-raypowder-diffraction study of palygorskite The Canadian Mineralogist 28 329339.Google Scholar
Chisholm, J.E., (1992) Powder-diffraction patterns and structural models for palygorskite The Canadian Mineralogist 30 6173.Google Scholar
Costanzo, P.M. and Guggenheim, S., (2001) editors () Baseline studies of the Clay Minerals Society source clays. Clays and Clay Minerals, 49, 371452.Google Scholar
de la d’Espinose Caillerie, J.-B. and Fripiat, J.J., (1994) A reassessment of the 29Si MAS-NMR spectra of sepiolite and aluminated sepiolite Clay Minerals 29 313318 10.1180/claymin.1994.029.3.02.Google Scholar
Fernandez, M.E. Ascencio, J.A. Mendoza-Anaya, D. Rodriguez Lugo, V. and Jose-Yacaman, M., (1999) Experimental and theoretical studies of palygorskite clays Journal of Materials Science 34 52435255 10.1023/A:1004724316051.Google Scholar
Fois, E. Gamba, A. and Tilocca, A., (2003) On the unusual stability of Maya blue paint: molecular dynamics simulations Microporous and Mesoporous Materials 57 263272 10.1016/S1387-1811(02)00596-6.Google Scholar
Frost, R.L. and Ding, Z., (2003) Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites Thermochimica Acta 397 119128 10.1016/S0040-6031(02)00228-9.Google Scholar
Frost, R.L. Cash, G.A. and Kloprogge, J.T., (1998) ‘Rocky Mountain leather’, sepiolite and attapulgite — an infrared emission spectroscopic study Vibrational Spectroscopy 16 173184 10.1016/S0924-2031(98)00014-9.Google Scholar
Frost, R.L. Locos, O.B. Ruan, H. and Kloprogge, J.T., (2001) Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites Vibrational Spectroscopy 27 113 10.1016/S0924-2031(01)00110-2.Google Scholar
Galán, E., (1996) Properties and applications of palygorskitesepiolite clays Clay Minerals 31 443453 10.1180/claymin.1996.031.4.01.Google Scholar
Galán, E. and Carretero, M.I., (1999) A new approach to compositional limits for sepiolite and palygorskite Clays and Clay Minerals 47 399409 10.1346/CCMN.1999.0470402.Google Scholar
Gonzalez, F. Pesquera, C. Blanco, C. Benito, I. Mendioroz, S. and Pajares, J.A., (1989) Structural and textural evolution of Al- and Mg-rich palygorskites, I. Under acid treatment Applied Clay Science 4 373388 10.1016/0169-1317(89)90043-4.Google Scholar
Guggenheim, S. and van Koster Groos, A.F., (2001) Baseline studies of the ClayMinerals Societysource clays: thermal analysis Clays and Clay Minerals 49 433443 10.1346/CCMN.2001.0490509.Google Scholar
Güven, N. de la d’Espinose Caillerie, J.-B. and Fripiat, J.J., (1992) The coordination of aluminum ions in the palygorskite structure Clays and Clay Minerals 40 457461 10.1346/CCMN.1992.0400410.Google Scholar
Horvath, G. and Kawazoe, K., (1983) Method for the calculation of effective pore size distribution in molecular sieve carbon Journal of Chemical Engineering of Japan 16 470475 10.1252/jcej.16.470.Google Scholar
Hubbard, B. Kuang, W. Moser, A. Facey, G.A. and Detellier, C., (2003) Structural study of Maya blue: textural, thermal and solid state multinuclear magnetic resonance characterization of the palygorskite-indigo and sepiolite-indigo adducts Clays and Clay Minerals 51 318326 10.1346/CCMN.2003.0510308.Google Scholar
Jones, B.F. Galán, E. and Bailey, S.W., (1988) Sepiolite and palygorskite Hydrous Phyllosilicates Washington, D.C Mineralogical Society of America 631674 10.1515/9781501508998-021.Google Scholar
Kleber, R. Masschelein-Kleiner, L. and Thissen, J., (1967) Study and identification of Maya blue Studies in Conservation 12 4156 10.1179/sic.1967.s005.Google Scholar
Komarneni, S. Fyfe, C.A. and Kennedy, G.J., (1986) Detection of nonequivalent Si sites in sepiolite and palygorskite by solid-state 29Si Magic Angle Spinning-Nuclear Magnetic Resonance Clays and Clay Minerals 34 99102 10.1346/CCMN.1986.0340113.Google Scholar
Kuang, W. Facey, G.A. Detellier, C. Casal, B. Serratosa, J.M. and Ruiz-Hitzky, E., (2003) Nanostructured hybrid materials formed bysequestration of pyridine molecules in the tunnels of sepiolite Chemistry of Materials 15 49564967 10.1021/cm034867i.Google Scholar
Madejová, J. and Komadel, P., (2001) Baseline studies of the Clay Minerals Society source clays: infrared methods Clays and Clay Minerals 49 410432 10.1346/CCMN.2001.0490508.Google Scholar
McKeown, D.A. Post, J.E. and Etz, E.S., (2002) Vibrational analysis of palygorskite and sepiolite Clays and Clay Minerals 50 667680 10.1346/000986002320679549.Google Scholar
Mermut, A.R. and Cano, A.F., (2001) Baseline studies of the Clay Minerals Society source clays: chemical analysis of major elements Clays and Clay Minerals 49 381386 10.1346/CCMN.2001.0490504.Google Scholar
Murray, H.H., (1991) Overview — clay mineral applications Applied Clay Science 5 379395 10.1016/0169-1317(91)90014-Z.Google Scholar
Murray, H.H., (1999) Applied clay mineralogy today and tomorrow Clay Minerals 34 3949 10.1180/000985599546055.Google Scholar
Murray, H.H., (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview Applied Clay Science 17 207221 10.1016/S0169-1317(00)00016-8.Google Scholar
Polette, L.A. Meitzner, G. Yacamán, M.J. and Chianelli, R.R., (2002) Maya blue: application of XAS and HRTEM to materials science in art and archaeology Microchemical Journal 71 167174 10.1016/S0026-265X(02)00008-5.Google Scholar
Preisinger, A., (1963) Sepiolite and related compounds: its stabilityand application Clays and Clay Minerals 10 365371 10.1346/CCMN.1961.0100132.Google Scholar
Sanz, J., Moltana, A. and Burragato, F., (1990) Distribution of ions in phyllosilicates by NMR spectroscopy Absorption Spectroscopy in Mineralogy Amsterdam Elsevier 103144.Google Scholar
Serna, C.J. and VanScoyoc, G.E., (1979) Infrared study of sepiolite and palygorskite surfaces Proceedings of the International Clay Conference, Oxford Amsterdam Elsevier 197206 1978.Google Scholar
Serna, C. VanScoyoc, G.E. and Ahlrichs, J.L., (1977) Hydroxyl groups and water in palygorskite American Mineralogist 62 784792.Google Scholar
Serratosa, J.M., (1979) Surface properties of fibrous clay minerals (palygorskite and sepiolite) Proceedings of the International Clay Conference, Oxford, 1978 Amsterdam Elsevier 99109.Google Scholar
Shariatmadari, H. Mermut, A.R. and Benke, M.B., (1999) Sorption of selected cationic and neutral organic molecules on palygorskite and sepiolite Clays and Clay Minerals 47 4453 10.1346/CCMN.1999.0470105.Google Scholar
Shore, J.S., DePaul, S., Ernst, M. and Phillips, B.L. (1998) Double-resonance and two-dimensional Silicon-29 NMR spectroscopy of minerals. Pp. 305325 in: Solid-State Nuclear Magnetic Resonance of Inorganic Materials (Fitzgerald, J.J., editor). ACS Symposium Series, 717, American Chemical Society.Google Scholar
Shuali, U. Yariv, S. Steinberg, M. Muller-Vonmoos, M. Kahr, G. and Rub, A., (1988) Thermal analysis study of the adsorption of heavy water by sepiolite and palygorskite Thermochimica Acta 135 291297 10.1016/0040-6031(88)87400-8.Google Scholar
Shuali, U. Steinberg, M. Yariv, S. Muller-Vonmoos, M. Kahr, G. and Rub, A., (1990) Thermal analysis of sepiolite and palygorskite treated with butylamine Clay Minerals 25 107119 10.1180/claymin.1990.025.1.12.Google Scholar
Sidheswaran, P., (2002) Heat-induced structural modifications in palygorskite Clay Research 21 2739.Google Scholar
Suárez Barrios, M. Flores González, L.V. Vicente Rodríguez, M.A. and Martín Pozas, J.M., (1995) Acid activition of a palygorskite with HCl: development of physico-chemical, textural and surface properties Applied Clay Science 10 247258 10.1016/0169-1317(95)00007-Q.Google Scholar
van Olphen, H., (1966) Maya Blue: a clay mineral-organic pigment? Science 154 645646 10.1126/science.154.3749.645.Google Scholar
van Olphen, H. and Fripiat, J.J., (1979) Data Handbook for Clay Materials and Other Non-Metallic Minerals Oxford, England Pergamon Press 346 pp.Google Scholar
VanScoyoc, G.E. Serna, C.J. and Ahlrichs, J.L., (1979) Structural changes in palygorskite during dehydration and dehydroxylation American Mineralogist 64 215223.Google Scholar
Webb, P.A. and Orr, C., (1997) Analytical Methods in Fine Particle Technology Norcross, Georgia Micromeritics Instrument Corporation 301 pp.Google Scholar
Weir, M.R. Facey, G.A. and Detellier, C., (2000) 1H, 2H, and 29Si solid state NMR studyof guest acetone molecules occupying the zeolitic channels of partially dehydrated sepiolite clay Studies in Surface Science and Catalysis 129 551558 10.1016/S0167-2991(00)80257-8.Google Scholar
Weir, M.R. Kuang, W. Facey, G.A. and Detellier, C., (2002) Solid state nuclear magnetic resonance study of sepiolite and partially dehydrated sepiolite Clays and Clay Minerals 50 240247 10.1346/000986002760832838.Google Scholar
Wu, W., (2001) Baseline studies of the Clay Minerals Society source clays: Colloid and surface phenomena Clays and Clay Minerals 49 446452 10.1346/CCMN.2001.0490511.Google Scholar
Yacamán, M.J. Rendon, L. Arenas, J. and Puche, M.C.S., (1996) Maya blue paint: an ancient nanostructured material Science 273 223225 10.1126/science.273.5272.223.Google Scholar