Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T16:12:32.281Z Has data issue: false hasContentIssue false

Comment on “The Role of H3O+ in the Crystal Structure of Illite” By F. Nieto, M. Melini, And I. Abad

Published online by Cambridge University Press:  01 January 2024

Olivier Vidal*
Affiliation:
LGCA, Université Grenoble, CNRS, 1381 rue de la Piscine, BP53, 38041 Grenoble cedex 09, France
Benoît Dubacq
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
Pierre Lanari
Affiliation:
LGCA, Université Grenoble, CNRS, 1381 rue de la Piscine, BP53, 38041 Grenoble cedex 09, France
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The arguments of Nieto et al. (2010) in favor of the incorporation of H3O+ rather than H2O in interlayer positions of illite are disputable. Stoichiometric arguments suggest that the excess water in the Silver Hill illite is in the form of H2O. Moreover, recent thermodynamic models assuming the incorporation of interlayer H2O in illite provide reasonable estimates of temperature and water content using the AEM/TEM analyses of Nieto et al. (2010).

Type
Article
Copyright
Copyright © Clay Minerals Society 2010

References

Abad, I., Nieto, F., Gutierrez-Alonso, G., do Campo, M., Lopez-Munguira, A. and Velilla, N., 2006 Illitic substitution in micas of very low-grade metamorphic clastic rocks European Journal of Mineralogy 18 5969 10.1127/0935-1221/2006/0018-0059.CrossRefGoogle Scholar
Drits, V.A. and McCarty, D.K., 2007 The nature of structure-bonded H2O in illite and leucophyllite from dehydration and dehydroxylation experiments Clays and Clay Minerals .CrossRefGoogle Scholar
Dubacq, B., Vidal, O. and De Andrade, V., 2010 Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates Contributions to Mineralogy and Petrology 159 159174 10.1007/s00410-009-0421-6.CrossRefGoogle Scholar
Hower, J. and Mowatt, T.C., 1966 The mineralogy of illites and mixed-layer illite/montmorillonites American Mineralogist 51 825854.Google Scholar
Jiang, W.T., Peacor, D.R. and Essene, E.J., 1994 Clay minerals in the McAdams sandstone, California: implica-tions for substitution of H3O and H2O and metastability of illite Clays and Clay Minerals 42 3545 10.1346/CCMN.1994.0420105.CrossRefGoogle Scholar
Nieto, F., Mellini, M. and Abad, I., 2010 The role of H3O+ in the crystal structure of illite Clays and Clay Minerals 58 238246 10.1346/CCMN.2010.0580208.CrossRefGoogle Scholar
Loucks, R.R., 1991 The bound interlayer H2O content of potassic white micas; muscovite-hydromuscovite-hydropyr-ophyllite solutions American Mineralogist 76 15631579.Google Scholar
Parra, T., Vidal, O. and Agard, P., 2002 A thermodynamic model for Fe-Mg dioctahedral K white micas using data from phase-equilibrium experiments and natural pelitic assemblages Contributions to Mineralogy and Petrology 143 706732 10.1007/s00410-002-0373-6.CrossRefGoogle Scholar
Ransom, B. and Helgeson, H., 1993 Compositional end-members and thermodynamic components of illite and dioctahedral aluminous smectite solid-solutions Clays and Clay Minerals 41 537550 10.1346/CCMN.1993.0410503.CrossRefGoogle Scholar
Vidal, O. and Dubacq, B., 2009 Thermodynamic modelling of clay dehydration, stability and compositional evolution with temperature, pressure and H2O activity Geochimica et Cosmochimica Acta 73 65446564 10.1016/j.gca.2009.07.035.CrossRefGoogle Scholar
Vidal, O. and Parra, T., 2000 Exhumation paths of high pressure metapelites obtained from local equilibria for chlorite-phengite assemblages Geological Journal 35 139161 10.1002/gj.856.CrossRefGoogle Scholar