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Abstract—The arguments of Nieto ez al. (2010) in favor of the incorporation of H;O™ rather than H,O in
interlayer positions of illite are disputable. Stoichiometric arguments suggest that the excess water in the
Silver Hill illite is in the form of H,O. Moreover, recent thermodynamic models assuming the
incorporation of interlayer H,O in illite provide reasonable estimates of temperature and water content

using the AEM/TEM analyses of Nieto et al. (2010).
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INTRODUCTION

Illite is a dioctahedral alkali-deficient mica with
excess water incorporated in apparent interlayer vacan-
cies (Hower and Mowatt, 1966; Loucks, 1991; Drits and
McCarthy, 2007; Vidal and Dubacq, 2009; Dubacq et a!.,
2010, Nieto et al., 2010). These vacancies are cation-
free crystallographic sites that appear due to charge-
balance constraints of the pyrophyllitic substitution K* +
AP =0+ Si*" (e.g. Abad et al., 2006). Excess water in
the interlayer is generally considered to be in the form of
H,O because a significant incorporation of H;0" would
imply unrealistically low pH (Hower and Mowatt, 1966;
Loucks, 1991; Jiang et al., 1994). However, Nieto et al.
(2010) suggest that the excess water in illite is in the
form of H;O". If this is true, a modification of the
common assumptions made to calculate the structural
formulae of alkali-deficient mica is necessary. A
revision of the recent thermodynamic models of Vidal
and Dubacq (2009) and Dubacq et al. (2010) would also
be necessary, as the hydrated and dehydrated interlayer
vacancies in illite are modeled using dehydrated and
hydrated pyrophyllite end-members.

Although Nieto et al. (2010) performed a very careful
and welcome study, we think that their arguments in
favor of the incorporation of H;0" instead of H,O in
interlayer position are disputable. Thermogravimetric
analyses (Drits and McCarty, 2007; Nieto et al., 2010) or
Fourier-transform infrared (FTIR) measurements (e.g.
Dubacq et al., 2010) indicate the presence of water in
alkali-deficient mica, but do not allow us to distinguish
H;0" from H,0. Consequently, the arguments of Nieto
et al. (2010) rely mainly on the calculation of structural

formulae assuming the presence of either H,O or H;0":
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(1) “The amount of interlayer water (H,O(i) =
0.42 a.p.f.u.) calculated from the chemical data of
Silver Hill illites and the water content measured
by Hower and Mowatt (1966) is higher than the
available space in interlayer position
(=0.3 a.p.f.u).” (a.p.f.u. = atoms or molecules per
formula unit).

However, the amount of water measured by Hower
and Mowatt (1966) (H,O = 6.4%) is too great for the
analysis selected by Nieto et al. (2010) as it leads to an
oxide total >100 wt.%. Ignoring TiO, as in the study of
Nieto et al. (2010), an oxide total of 100 wt.% is
obtained for H,O = 5.88%, which corresponds to
0.305 a.p.fu. (H,O() in the first column of Table 1,
Case 1) and to the number of apparent interlayer
vacancies. The same reasoning can be used for the
structural formulae of illite reported by Nieto et al.
(2010). With the value of H,O = 5.88% determined
above, H,O(i) = 0.28 a.p.f.u. for the ‘“‘average”
composition listed in their table 2, which is again
compatible with the value of 0.3 apparent interlayer
vacancies. For the AEM/TEM analyses listed in table 1
of Nieto et al. (2010), the apparent vacancies range
between 0.115 and 0.463. Assuming that they are
occupied by molecular water, H,O is found to range
between 5 and 6.64 wt.%, with an average value of
5.8 wt.% (Table 1). The average value is in agreement
with the value estimated above from the analysis by
Hower and Mowatt (1966).

(2) “When assuming that the excess water
corresponds to H;O" and eventually adjusting the
Fe?'/Fe>* ratio, the calculated structural formulae
have an octahedral occupancy (OC) of 2 and an
interlayer occupancy (IC) of 1. It follows that the Si
in excess of 3 a.p.f.u. and the amount of Mg + Fe?*
are explained by the Tschermak substitution alone.”
The total number of cations in the illite structural

formula, calculated on the basis of 22 negative charges
(010(OH),) and assuming that (K™ +Na"+H30 )intertayer
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=1 a.p.f.u,, is indeed less than if H,O is assumed to be
incorporated in the interlayer position. As a result, both
the Si content and the OC decrease and the extent of both
di-trioctahedral and pyrophyllitic substitutions is
reduced.

Unfortunately, Nieto et al. (2010) compared the
structural formulae calculated assuming the incorpora-
tion of H,O or H;0" for the average illite composition
only. The structural formulae of all the individual TEM/
AEM analyses reported by Nieto e al. (2010) are listed
in Table 1. In Case 2 (incorporation of H;0"), they have
been calculated on a 22 negative charge basis, and H;0"
was adjusted in order to obtain (K" +Na*+ H30+)interlayer
= 1. In contrast with the statement of Nieto et al. (2010),
the OC is generally different from the ideal value of
2 a.p.f.u. (Table 1). It is often less than this value, which
implies that the composition of illite cannot be explained
by the Tschermak substitution alone (Ransom and
Helgeson, 1993). This point is further illustrated in
Figure 2, which shows that a linear combination of the
celadonite (XCel = Mg + Fe*") and muscovite (XMusc =
1 — XCel) end-members does not reproduce the Si
content of the structural formulae. The scatter of the
open symbols in Figure 1 shows that the octahedral
(Fe** + Mg) and tetrahedral Si contents cannot both be
described by the Tschermak substitution alone between
(K",H30")-celadonite and muscovite. Additional end-
members are thus required. The OC obtained when
assuming the incorporation of H,O (Case 1) are also
different but generally >2. This is easily explained by
the incorporation of a trioctahedral component in illite,
as observed in phengite at high temperature or smectite
at lower temperature. In this case, the molar fraction of
pyrophyllite (Prl: Sis(ALFe*),0,,(0H),), hydrated pyr-
ophyllite (PrlH: Sig(AlFe*"),0,,(0OH),.H,0), biotite
(Bt: (Si3A1)(Mg,Fez+)3K01O(OH)Z), celadonite (Cel:
Sig(Al, Fe*")(Mg,Fe>")KO,o(OH),), and muscovite
(Musc: (SizAl)(Al, Fe3+)2K010(OH)2) end-members
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Figure 1. Si content calculated from the proportion of end-
members in Cases 1 (incorporation of H,O, filled symbols) and 2
(incorporation of H;O", open symbols) vs. Si content of the
structural formulae. In Case 2, the molar fraction of Cel and
Musc are calculated from the octahedral (Mg + Fe*") content.
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proposed by Dubacq ef al. (2010) are listed in Table 1.
The structural formulae are fully reproduced with these
end-members, e.g. the Si content of the structural
formulae (Figure 1, filled symbols).

Because of the stoichiometric reasons listed above,
the excess water in the illite grains analysed by Nieto et
al. (2010) is more likely, or at least possibly, in the form
of molecular water rather than H;0" The thermodynamic
model of Dubacq et al. (2010) was used to estimate the
amount of H,O(i) and the temperature of equilibrium
among the Silver Hill illite, quartz, and water at 1 kbar
(Figure 2). Although the illite compositions reported by
Nieto et al. (2010) are highly variable, the calculated
temperatures are quite similar and define conditions at
~210°C (Figure 2). Moreover, the predicted amount of
interlayer water is very close in each case to the
maximum value estimated from the stoichiometric
criteria above. These results can be viewed as an
additional and independent argument in favor of the
incorporation of neutral water in the apparent vacancies
of illite.

CONCLUSION

(1) We agree with Nieto et al. (2010) that thermo-
barometric estimates cannot be made without considera-
tion of excess water in illite, i.e. using the model of
Vidal and Parra (2000) or Parra et al. (2002) derived for
phengites. However, stoichiometric and thermodynamic
arguments both suggest that the excess water in the
Silver Hill illite is in the form of H,O rather than H;0".
An independent argument against a significant incor-
poration of H30" is that it would imply unrealistically
low pH, as already discussed by Hower and Mowatt
(1966), Loucks (1991), and Jiang et al. (1994).

Number of analyses
N w i G  ~N

0

120 140 160 180 200 220 240 260

Temperature (°C)

Figure 2. Frequency histogram showing temperatures of
equilibrium for illite, quartz, and water, calculated using the
model of Dubacq et al. (2010) for the compositions of the Silver
Hill illite listed in Nieto ez al. (2010).
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(2) No evidence was found to support the assumption
that octahedral occupancy in illite should exactly equal 2
or that the interlayers should sum exactly to unity.

(3) The thermobarometric model of Dubacq et al.
(2010) gives reasonable estimates of equilibrium condi-
tions and water content when assuming that H,O is
incorporated in the interlayer position of illite. The
thermodynamic model of Dubacq et al. (2010) is,
therefore, in good agreement with the analytical results
of Nieto et al. (2010).
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