Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T19:44:00.162Z Has data issue: false hasContentIssue false

Cation-Exchange Reactions of Siliceous and Aluminous Phillipsites

Published online by Cambridge University Press:  01 July 2024

Yasuhiro Shibue*
Affiliation:
Department of Earth Science and Astronomy, College of General Education University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan
*
1Present address: Geological Institute, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Exchange isotherms for the pairs Na-K and Na-Ca were measured by use of 0.1 N solutions at 5°, 35°, and 70°C in phillipsite from Tecopa, California (3.63 Al/32 oxygen unit cell), and Oki Islands, Shi-mane Prefecture, Japan (6.31 Al/32 oxygen unit cell). All isotherms except those for Na-Ca at 5°C were reversible. Free energy was evaluated for all reversible exchanges. The thermodynamic affinity sequences were K > Na > Ca in both phillipsites. The selectivity for K in competition with Na and that for Na competing with Ca became larger at the lower temperatures. The siliceous phillipsite preferred the larger cation more strongly for the Na-K system, and Na more strongly for the Na-Ca system than the aluminous phillipsite.

Резюме

Резюме

Изоьермы обмена для пар Na-K и Na-Ca измерялись при использовании 0,1 N растворов при 5°, 35°, и 70°C в филлипситах из Озера Текопа в Калифорнии (3,63 Al/32 O элементарная ячейка) и островов Оки, в префектуре Шимане, Япония (6,31 Al/32 O элементарная ячейка). Все изотермы, за исключении этих для Na-Ca при 5°C, были обратимы. Свободная энергия была определена для всех обратимых обменов. Для обоих Филлипситов порядок термодинамического сродства был: K > Na > Ca. Селективность для К, соревнующегося с Ыа, и селективность для Na, соревнующегося с Са, увеличивалась при более низких температурах. Кремнеземный филлипсит предпочитал большей катион для системы Na-K и Na ион для системы Na-Ca более, чем глиноземный филлипсит. [E.C.]

Resümee

Resümee

Es wurden die Austauschisotherme für die Paare Na-K und Na-Ca für die Phillipsite von Lake Tecopa, Kalifornien (3,63 Al/32 O Elementarzelle) und Oki Islands, Simane Prefecture, Japan, gemessen, wobei 0,1 N Lösungen bei 5°, 35°, und 70°C verwendet wurden. Alle Isotherme mit Ausnahme derer für Na-Ca bei 5°C waren reversibel. Die freie Energie wurde für alle reversiblen Austauschreaktionen berechnet. Die thermodynamische Affinitäts-abfolge war in beiden Phillipsiten K > Na > Ca. Die Selektivität für K gegenüber Na und die für Na gegenüber Ca wurde bei niedrigen Temperaturen größer. Der Silizium-reiche Phillipsit bevorzugt im Fall des Na-K-Systems das größere Kation stärker und im Fall des Na-Ca-Systems das Na stärker als der Al-reiche Phillipsit. [U.W.]

Résumé

Résumé

Les isothermes d’échange pour les paires Na-K et Na-Ca ont été mesurées par l'emploi de 0,1 N solutions à 5°, 35°, et 70°C dans des phillipsites de Lake Tecopa, Californie (maille 3,63 Al/32 O) et des îles Oki, Préfecture Shimane, Japon (maille 6,31 Al/32 O). Tous les isothermes étaient réversibles sauf ceux pour Na-Ca à 5°C. L'energie libre a été évaluée pour tous les échanges réversibles. Les séquences d'affinité thermodynamique étaient K > Na > Ca dans les deux phillipsites. La sélectivité pour K en compétition avec Na et celle pour Na en compétition avec Ca est devenue plus grandes à de basses températures. La phillipsite silice montrait une plus forte préférence que la phillipsite aluminium pour le plus grand cation pour le système Na-K et pour Na pour le système Na-Ca. [D.J.]

Type
Research Article
Copyright
Copyright © 1981, The Clay Minerals Society

References

Ames, L. L. Jr., (1964) Some zeolite equilibria with alkali metal cations Amer. Mineral. 49 127145.Google Scholar
Ames, L. L. Jr., (1964) Some zeolite equilibria with alkali earth metal cations Amer. Mineral. 49 10991110.Google Scholar
Barrer, R. M. Davies, J. A. and Rees, L. V. C., (1969) Comparison of the ion exchange properties of zeolites X and Y J. Inorg. Nucl. Chem. 31 25992609.CrossRefGoogle Scholar
Barrer, R. M. Davies, J. A. and Rees, L. V. C., (1969) Thermodynamics and thermochemistry of cation exchange in chabazite J. Inorg. Nucl. Chem. 31 219232.CrossRefGoogle Scholar
Barrer, R. M. and Klinowski, J., (1972) Influence of framework charge density on ion exchange properties of zeolites J. Chem. Soc. Faraday I 68 19561963.CrossRefGoogle Scholar
Barrer, R. M. and Munday, B. M., (1971) Cation exchange reactions of a sedimentary phillipsite J. Chem. Soc. A 29042909.CrossRefGoogle Scholar
Gaines, G. L. Jr. and Thomas, H. L., (1953) Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption J. Chem. Phys. 21 714718.CrossRefGoogle Scholar
Galli, E. and Ghittoni, G. L., (1972) The crystal chemistry of phillipsites Amer. Mineral. 57 11251145.Google Scholar
Garrels, R. M. and Christ, C. L., (1965) Solutions, Minerals, and Equilibria New York Harper and Row.Google Scholar
Lewis, G. N. and Randall, M., (1961) Thermodynamics 2nd ed. New York McGraw-Hill 643658.Google Scholar
Rinaldi, R. Pluth, J. J. and Smith, J. V., (1974) Zeolites of the phillipsite family. Refinement of the crystal structure of phillipsite and harmotome Acta Crvstallogr. B30 24262433.CrossRefGoogle Scholar
Sheppard, R. A. and Gude, A. J. 3rd (1968) Distribution and genesis of authigenic zeolite minerals in tuffs of Pleistocene Lake Tecopa, Inyo County, California: U.S. Geol. Surv. Prof. Pap. 597, 39 pp.Google Scholar
Stonecipher, S. A., Sand, L. B. and Mumpton, F. A., (1978) Chemistry of deep-sea phillipsite, clinoptilolite, and host sediments Natural Zeolites: Occurrences, Properties, Use Elmsford, New York Pergamon Press 231234.Google Scholar