Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T10:58:47.410Z Has data issue: false hasContentIssue false

Ab initio calculations of relative stabilities of different structural arrangements in dioctahedral phyllosilicates

Published online by Cambridge University Press:  01 January 2024

Daniel Tunega
Affiliation:
Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria Department of Environmental Research, Austrian Research Centers GmbH — ARC, A-2444 Seibersdorf, Austria
Bernard A. Goodman*
Affiliation:
Department of Environmental Research, Austrian Research Centers GmbH — ARC, A-2444 Seibersdorf, Austria Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Georg Haberhauer
Affiliation:
Department of Environmental Research, Austrian Research Centers GmbH — ARC, A-2444 Seibersdorf, Austria
Thomas G. Reichenauer
Affiliation:
Department of Environmental Research, Austrian Research Centers GmbH — ARC, A-2444 Seibersdorf, Austria
Martin H. Gerzabek
Affiliation:
Institute of Soil Research, University of Natural Resources and Applied Life Sciences, Peter-Jordan-Strasse 82b, A-1190 Vienna, Austria
Hans Lischka
Affiliation:
Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An ab initio theoretical approach has been used to calculate optimized geometries and the relative energies of various compositional arrangements in structures of dioctahedral smectites based on models consisting of two unit-cells. These calculations indicate that the energy differences between structures having vacancies in sites with cis- or trans-OH coordination are small and that their relative energies vary with the chemical nature of the substitutions. For example, a cis-OH coordination for the vacancy was the most stable when the interlayer charge originated from substitution of Al for Si in the tetrahedral sheet, whereas the trans-coordination was the more stable for most cases of substitution in the octahedral sheet, an exception being Fe(II) for Al where the cis-OH coordination was favored. It seems likely, therefore, that long-range structural disorder will be a common phenomenon in natural phyllosilicate specimens.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structures of layer silicates Crystal Structure of Clay Minerals and their X-ray Identification London Mineralogical Society 1123.Google Scholar
Benco, L. Tunega, D. Hafner, J. and Lischka, H., (2001) Ab-initio density-functional theory applied to the structure and proton dynamics of clays Chemical Physics Letters 333 479484 10.1016/S0009-2614(00)01412-3.CrossRefGoogle Scholar
Blöchl, P.E., (1994) Projector augmented-wave method Physics Review B 50 1795317979 10.1103/PhysRevB.50.17953.CrossRefGoogle ScholarPubMed
Bosenick, A. Dove, M.T. Myers, E.R. Palin, E.J. Sainz-Diaz, C.I. Guiton, B. Warren, M.C. Craig, M.S. and Redfern, S.A.T., (2001) Computational methods for the study of energies of cation distributions: applications to cation-ordering phase transitions and solid solutions Mineralogical Magazine 65 193219 10.1180/002646101550226.CrossRefGoogle Scholar
Botella, V. Timon, V. Escamilla-Roa, E. Hernandez-Laguna, A. and Sainz-Diaz, C.I., (2004) Hydrogen bonding and vibrational properties of hydroxy groups in the crystal lattice of dioctahedral clay minerals by means of first principles calculations Physics and Chemistry of Minerals 31 475486 10.1007/s00269-004-0398-7.CrossRefGoogle Scholar
Bridgeman, C.H. Buckingham, A.D. Skipper, N.T. and Payne, M.C., (1996) Ab-initio total energy study of uncharged 2:1 clays and their interaction with water Molecular Physics 89 879888 10.1080/00268979609482512.CrossRefGoogle Scholar
Bruno, M. Prencipe, M. and Valdre, G., (2006) Ab initio quantum-mechanical modeling of pyrophyllite [Al2Si4O10(OH)2] and talc [Mg3Si4O10(OH)2] surfaces Physics and Chemistry of Minerals 33 6371 10.1007/s00269-005-0055-9.CrossRefGoogle Scholar
Churakov, S.V., (2006) Ab initio study of sorption on pyrophyllite: structure and acidity of the edge sites Journal of Physical Chemistry B 110 41354146 10.1021/jp053874m.CrossRefGoogle ScholarPubMed
Cicel, B. Komadel, P., Amonette, J.E. and Zelazny, L.W., (1994) Structural formulae of layer silicates Quantitative Methods in Soil Mineralogy Madison, Wisconsin, USA Soil Science Society of America, Inc. 114136.Google Scholar
Cuadros, J. Sainz-Diaz, C.I. Ramirez, R. and Hernández-Laguna, A., (1999) Analysis of Fe segregation in the octahedral sheet of bentonitic illite-smectite by means of FT-IR, 27Al MAS NMR and reverse Monte Carlo simulations American Journal of Science 299 289308 10.2475/ajs.299.4.289.CrossRefGoogle Scholar
Drits, V.A., (2003) Structural and chemical heterogeneity of layer silicates and clay minerals Clay Minerals 38 403432 10.1180/0009855033840106.CrossRefGoogle Scholar
Drits, V.A. Lindgreen, H. Salyn, A.L. Ylagan, R. and McCarty, D.K., (1998) Semiquantitative determination of trans-vacantand cis-vacant 2:1 layers in illites and illite-smectites by thermal analysis and X-ray diffraction American Mineralogist 83 11881198 10.2138/am-1998-11-1207.CrossRefGoogle Scholar
Goodman, B.A., (1976) The effect of lattice substitutions on the derivation of quantitative site populations from the Mössbauer spectra of 2:1 layer-lattice silicates Journal of Physics (Paris), Colloquium C6 37 819823 10.1051/jphys:01976003707-8081900.Google Scholar
Hobbs, J.D. Cygan, R.T. Nagy, K.L. Schultz, P.A. and Sears, M.P., (1997) All atom ab initio energy minimization of the kaolinite crystal structure American Mineralogist 82 657662 10.2138/am-1997-7-801.CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Journal of Computers in Mathematics and Science 6 1550 10.1016/0927-0256(96)00008-0.CrossRefGoogle Scholar
Kresse, G. and Hafner, J., (1993) Ab initio molecular dynamics for open-shell transition metals Journal of Physical Chemistry B 48 1311513118.Google ScholarPubMed
Kresse, G. and Joubert, D., (1999) From ultrasoft pseudo-potentials to the projector augmented-wave method Physical Review B 59 17581775 10.1103/PhysRevB.59.1758.CrossRefGoogle Scholar
Laird, D.A. and Mermut, A.R., (1994) Evaluation of the structural formula and alkylammonium methods of determining layer charge Layer Charge Characteristics of 2:1 Silicate Clay Minerals Aurora, Colorado The Clay Minerals Society 80103.Google Scholar
Lee, J.H. and Guggenheim, S., (1981) Single-crystal X-ray refinementof pyrophyllite-1Tc American Mineralogist 66 350357.Google Scholar
Manceau, A. Lanson, B. Drits, V.A. Chateigner, D. Gates, W.P. Wu, J. Huo, D. and Stucki, J.W., (2000) Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites American Mineralogist 85 133152 10.2138/am-2000-0114.CrossRefGoogle Scholar
McCarty, D.K. and Reynolds, R.C., (1995) Rotationally-disordered illite/smectite in Paleozoic K-bentonites Clays and Clay Minerals 43 271284 10.1346/CCMN.1995.0430302.CrossRefGoogle Scholar
McConnell, J.D.C. De Vita, A. Kenny, S.D. and Heine, V., (1997) Determination of the origin and magnitude of Al/Si ordering enthalpy in framework aluminosilicates from ab initio calculations Physics and Chemistry of Minerals 25 1523 10.1007/s002690050081.CrossRefGoogle Scholar
Monkhorst, H.J. and Pack, J.D., (1976) Special points for Brillouin-zone integrations Physical Review B 13 51885192 10.1103/PhysRevB.13.5188.CrossRefGoogle Scholar
Morris, H.D. Blank, S. and Ellis, P.D., (1990) 27-Al NMR spectroscopy of iron-bearing montmorillonite clays Journal of Physics and Chemistry 94 31213129 10.1021/j100370a069.CrossRefGoogle Scholar
Palin, E.J. Dove, M.T. Hernandez-Laguna, A. and Sainz-Diaz, C.I., (2004) A computational investigation of the Al/Fe/Mg order-disorder behavior in the dioctahedral sheet of phyllosilicates American Mineralogist 89 164175 10.2138/am-2004-0119.CrossRefGoogle Scholar
Perdew, J.P. and Wang, Y., (1992) Accurate and simple analytic representation of the electron-gas correlation energy Physical Review B 45 1324413249 10.1103/PhysRevB.45.13244.CrossRefGoogle ScholarPubMed
Perdew, J.P. and Zunger, A., (1981) Self-interaction correction to density-functional approximations for many-electron systems Physical Review B 23 50485079 10.1103/PhysRevB.23.5048.CrossRefGoogle Scholar
Refson, K. Park, S.-H. and Sposito, G., (2003) Ab initio computational crystallography of 2:1 clay minerals: 1. Pyrophyllite-1Tc Journal of Physical Chemistry B 107 1337613383 10.1021/jp0347670.CrossRefGoogle Scholar
Sainz-Diaz, C.I. Cuadros, J. and Hernández-Laguna, A., (2001) Analysis of cation distribution in the octahedral sheetof dioctahedral 2:1 phyllosilicates by using inverse Monte Carlo methods Physics and Chemistry of Minerals 28 445454 10.1007/s002690100171.Google Scholar
Sainz-Diaz, C.I. Hernández, A. and Dove, M.T., (2001) Modelling of dioctahedral 2:1 phyllosilicates by means of transferable empirical methods Physics and Chemistry of Minerals 28 130141 10.1007/s002690000139.CrossRefGoogle Scholar
Sainz-Diaz, C.I. Hernández, A. and Dove, M.T., (2001) Theoretical modelling of cis-vacantand trans-vacantcon-figurations in the octahedral sheet of illites and smectites Physics and Chemistry of Minerals 28 322331 10.1007/s002690100156.CrossRefGoogle Scholar
Sainz-Diaz, C.I. Timon, V. Botella, V. Artacho, E. and Hernández-Laguna, A., (2002) Quantum mechanical calculations of dioctahedral 2:1 phyllosilicates: Effect of octahedral cation distributions in pyrophyllite, illite and smectite American Mineralogist 87 958965 10.2138/am-2002-0719.CrossRefGoogle Scholar
Sainz-Diaz, C.I. Palin, E.J. Hernández-Laguna, A. and Dove, M.T., (2003) Octahedral cation ordering of illite and smectite. Theoretical exchange potential determination and Monte Carlo simulations Physics and Chemistry of Minerals 30 382392 10.1007/s00269-003-0324-4.CrossRefGoogle Scholar
Sainz-Diaz, C.I. Palin, E.J. Dove, M.T. and Hernández-Laguna, A., (2003) Monte Carlo simulations of ordering of Al, Fe, and Mg cations in the octahedral sheet of smectites and illites American Mineralogist 88 10331045 10.2138/am-2003-0712.CrossRefGoogle Scholar
Sainz-Diaz, C.I. Palin, E.J. Hernández-Laguna, A. and Dove, M.T., (2004) Effect of the tetrahedral charge on the orderdisorder of the cation distribution in the octahedral sheet of smectites and illites by computational methods Clays and Clay Minerals 52 357374 10.1346/CCMN.2004.0520311.CrossRefGoogle Scholar
Skipper, N.T. Chang, F.R.C. and Sposito, G., (1995) Monte-Carlo simulation of interlayer molecular-structure in swelling clay-minerals. 1. Methodology Clays and Clay Minerals 43 285293 10.1346/CCMN.1995.0430303.CrossRefGoogle Scholar
Smrčok, L. and Benco, L., (1996) Ab initio periodic Hartree-Fock study of lizardite 1T American Mineralogist 81 14051412 10.2138/am-1996-11-1213.CrossRefGoogle Scholar
Soler, J.M. Artacho, E. Gale, J.D. García, A. Junquera, J. Ordejón, P. and Sánchez-Portal, D., (2002) The SIESTA method for ab initio order-N materials simulation Journal of Physics: Condensed Matter 14 27452779.Google Scholar
Stixrude, L. and Peacor, D.R., (2002) First principles study of illite-smectite and implications for clay mineral systems Nature 420 165168 10.1038/nature01155.CrossRefGoogle ScholarPubMed
Stucki, J.W., Stucki, J.W. Goodman, B.A. and Schwertmann, U., (1988) Structural iron in smectites Iron in Soils and Clay Minerals Dordrecht, The Netherlands D. Reidel Publishing Co. 625675 10.1007/978-94-009-4007-9_17.CrossRefGoogle Scholar
Teppen, B.J. Rasmussen, K. Bertsch, P.M. Miller, D.M. and Schäfer, L., (1997) Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite Journal of Physical Chemistry B 445 15791587 10.1021/jp961577z.CrossRefGoogle Scholar
Teppen, B.J. Yu, C.-H. Newton, S.Q. Miller, D. and Schäfer, L., (2002) Quantum molecular dynamics simulation regarding the dechlorination of trichloroethene in the interlayer space of the 2:1 clay mineral nontronite Journal of Physical Chemistry A 106 54985503 10.1021/jp0132127.CrossRefGoogle Scholar
Timon, V. Sainz-Diaz, C.I. Botella, V. and Hernández-Laguna, A., (2003) Isomorphous cation substitution in dioctahedral phyllosilicates by means of ab initio quantum mechanical calculations on clusters American Mineralogist 88 17881795 10.2138/am-2003-11-1219.CrossRefGoogle Scholar
Tsipursky, I. and Drits, V.A., (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction Clay Minerals 19 177193 10.1180/claymin.1984.019.2.05.CrossRefGoogle Scholar
Tunega, D. and Lischka, H., (2003) Effectof Si/Al ordering on structural parameters and the energetic stabilization of vermiculites — a theoretical study Physics and Chemistry of Minerals 30 517522 10.1007/s00269-003-0347-x.CrossRefGoogle Scholar
Wang, L. Zhang, M. Redfern, S.A.T. and Zhang, Z.Y., (2002) Dehydroxylation and transformations of the 2:1 phyllosilicate pyrophyllite at elevated temperatures: An infrared spectroscopic study Clays and Clay Minerals 50 272283 10.1346/000986002760832874.CrossRefGoogle Scholar