Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T03:48:54.973Z Has data issue: false hasContentIssue false

Further Observations on the Morphology of Chrysotile and Halloysite

Published online by Cambridge University Press:  01 January 2024

Thomas F. Bates
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania, USA
Joseph J. Comer
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Electron microscope studies of chrysotile show that tubes are present in bulk specimens and that these tubes commonly have fuzzy, amorphous-looking material on both the inside and outside. Similar material is associated with synthetic chrysotile and has been noted previously in halloysite specimens. The existence of such material between and within the tubes, together with apparent irregularities in size, shape and packing of tubes, explains the apparent discrepancy between the measured density of bulk samples and the calculated density of a hypothetical sample consisting of close-packed, regular, hollow capillaries.

Replicas of fractured surfaces of halloysite (2H2O) from various localities reveal that the particles occur as curved to flat laths commonly possessing “hexagonal” terminations and surface features indicative of a higher degree of crystallinity than tubes of halloysite (4H2O).

It is suggested that a complete morphological series from plates through laths to tubes exists both in platy to fibrous serpentine and in kaolinite to halloysite (4H2O). In each series a number of structural varieties are to be expected between the morphologically distinct “end members.”

Type
Article
Copyright
Copyright © Clay Minerals Society 1957

References

Bates, T. F. (1951) Morphology of layer lattice silicates: J. Sci. Labs. Denison Univ., v. 42, pp. 8392.Google Scholar
Bates, T. F. (1955) Electron microscopy as a method of identifying clays: in Clays and Clay Technology, Calif. Div. Mines Bull. 169, pp. 130150.Google Scholar
Bates, T. F. and Comer, J. J. (1955), Electron microscopy of clay surfaces: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council pub. 395, pp. 125.Google Scholar
Bates, T. F., Hildebrand, F. A. and Swineford, Ada, 1950, Morphology and structure of endellite and halloysite: Amer. Min., v. 35, pp. 463484.Google Scholar
Bates, T. F., Sand, L. B. and Mink, J. F. (1950) Tubular crystals of chrysotile asbestos: Science, v. 1ll, pp. 512513.CrossRefGoogle Scholar
Behne, W. and Müller, W. (1954) Electronenmikroskopische Untersuchungen über die Morphologie von Halloysite: Naturwiss., v. 41, p. 138.CrossRefGoogle Scholar
Brindley, G. W. and Comer, J. J., 1956, The structure and morphology of a kaolin clay from Les Eyzies, France: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council pub. 456, pp. 6166.Google Scholar
Comer, J. J. and Turley, J. W. (1955) Replica studies of bulk clays: J. Appl. Phys., v. 26, pp. 346350.CrossRefGoogle Scholar
DeKeysor, W. L. and Degueldre, L. (1954) Relations between the morphology and structure of kaolins and halloysites: Bull. Soc. Beige. Geol., Paleontol. et Hydrol., v. 63, pp. 100110.Google Scholar
Fleischer, M. (1957) New mineral names: lizardite, ortho-chrysotile, clino-chrysotile, para-chrysotile: Amer. Min., v. 42, p. 585.Google Scholar
Gillery, F. H. (1958) x-Ray study of synthetic Mg—Al serpentines and chlorites: in press.Google Scholar
Healey, F. H. and Young, G. J. (1954) The surface properties of chrysotile asbestos: J. Phys. Chem., v. 58, pp. 885886.CrossRefGoogle Scholar
Honjo, G., Kitamura, N. and Mihama, K. (1954) A study by means of single crystal electron diffraction diagrams—the structure of tubular kaolin: Clay Minerals Bull., v. 2, pp. 133140.CrossRefGoogle Scholar
Honjo, G. and Mihama, K. (1954) A study of clay minerals by electron diffraction diagrams due to individual crystallites: Acta Cryst., v. 7, pp. 511513.CrossRefGoogle Scholar
Jagodzinski, H. and Kunze, G. (1954) Die Rollchenstruktur des Chrysotils: Neues Jahrb. Min., Mh. 1954, pp. 95108, pp. 113-130, pp. 137-150.Google Scholar
Kalousek, G. L. and Muttart, L. E. (1957) Studies on the chrysotile and antigorite components of serpentine: Amer. Min., v. 42, pp. 122.Google Scholar
Nagy, B. (1953) The textural pattern of the serpentines: Econ. Geol., v. 48, pp. 591597.CrossRefGoogle Scholar
Nagy, B. and Faust, G. T. (1956) Serpentines: natural mixtures of chrysotile and antigorite: Amer. Min., v. 41, pp. 817837.Google Scholar
Noll, W. and Kircher, H. (1950) Zur Morphologie des Chrysotilasbestes: Naturwiss., v. 37, pp. 540541.CrossRefGoogle Scholar
Noll, W. and Kircher, H. (1951) Uber die Morphologie von Asbesten und ihren Zusammenhang mit der Kristallstruktur: Neues Jahrb. Min., Mh. 10, pp. 219240.Google Scholar
Noll, W. and Kircher, H. (1952) Veränderungen von Chrysotilasbest im Electronenmikroskop: Naturwiss., v. 39, p. 188.CrossRefGoogle Scholar
Oberlin, A. M. (1957) Altération des cristaux de kaolinite; détermination par microdiffraction électronique, de la structure des produits altérés: C. R. Acad. Sci., Paris, v. 244, pp. 16581661.Google Scholar
Oberlin, A. M. and Tchoubar, C. (1957) Étude en microscopie électronique de l'altération des cristaux de kaolinite: C.R. Acad. Sci., Paris, v. 244, pp. 16241626.Google Scholar
O'Daniol, H. and Kedesdy, H. (1947) Uber eine mieellare Silakatstruktur: Naturwiss., v. 34, p. 55.CrossRefGoogle Scholar
Pundsack, F. L. (1956) The properties of asbestos. II. The density and structure of chrysotile: J. Phys. Chem., v. 60, pp. 361364.CrossRefGoogle Scholar
Pundsack, F. L. (1958) The density and structure of endellite: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council, pub. 566, pp. 129135.Google Scholar
Sudo, T. and Takahashi, H. (1956) Shapes of halloysite particles in Japanese clays: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council, pub. 456, pp. 6779.Google Scholar
Turkevich, J. and Hillier, J. (1949) Electron microscopy of colloidal systems: Analyt. Chem., v. 21, pp. 475485.Google Scholar
Visconti, Y. S., Nicot, B. N. F. and Goulart de Andrade, E. (1956) Tubular morphology of some Brazilian kaolins: Amer. Min., v. 41, p. 6776.Google Scholar
Whittaker, E. J. W. (1953) The structure of chrysotile: Acta Cryst. 6, pp. 747748.CrossRefGoogle Scholar
Whittaker, E. J. W. (1954) the diffraction of x-rays by a cylindrical lattice. I: Acta. Cryst., v. 7, pp. 827832.CrossRefGoogle Scholar
Whittaker, E. J. W, (1955) The diffraction of x-rays by a cylindrical lattice. II: Acta Cryst., v. 8, pp. 261265; III: Acta Cryst., v. 8, pp. 265-271.CrossRefGoogle Scholar
Whittaker, E. J. W. and Zussman, J. (1956) The characterization of serpentine minerals by x-ray diffraction: Min. Mag., v. 31, pp. 107127.Google Scholar
Young, G. J. and Healey, F. H. (1954) The physical structure of asbestos: J. Phys. Chem., v. 58, pp. 881884.CrossRefGoogle Scholar
Zussman, J., Brindley, G. W. and Comer, J. J. (1957) Electron diffraction studies of serpentine minerals: Amer. Min., v. 42, pp. 133153.Google Scholar