Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-03T08:18:54.523Z Has data issue: false hasContentIssue false

Spectroscopic study of the adsorption of rhodamine 6G on clay minerals in aqueous suspensions

Published online by Cambridge University Press:  09 July 2018

F. Lopez Arbeloa
Affiliation:
Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080 Bilbao, Spain
M. J. Tapia Estevez
Affiliation:
Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080 Bilbao, Spain
T. Lopez Arbeloa
Affiliation:
Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080 Bilbao, Spain
I. Lopez Arbeloa
Affiliation:
Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080 Bilbao, Spain

Abstract

Absorption and fluorescence spectroscopies were applied to study the adsorption of rhodamine 6G on several smectite-type clays in aqueous suspension. The dye can be adsorbed as the monomeric and the dimeric forms on both the external and the interlamellar surfaces of the clay. The presence of these species and their evolution with the stirring time of the sample and the relative dye/clay concentration depend on the nature of the smectite, the clay concentration and the particle size, factors that also affect the dispersion degree of the clay particles in water.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cenens, J., Schoonheydt, R.A. & De Schryver, F.C. (1990) Probing the surface of clays in aqueous suspension by fluorescence spectroscopy of proflavine. Pp 378–395 in: Spectroscopic Characterization of Minerals and their Surfaces (Coyne, L.M., Mckeever, S.W. & Blake, C.F., editors). Am. Chem. Soc., Washington.Google Scholar
Gehlen, M.H. & De Schryver, F.C. (1993) Time-resolved fluorescence quenching in micelles assemblies. Chem. Rev. 93, 199221.Google Scholar
Gessner, F., Schmitt, C.C. & Neumann, M.G. (1994) Time-dependent spectrophotometric study of the interaction of basic dyes with clays. 1. Methylene blue and neutral red on montmorillonite and hectorite. Langmuir, 10, 37493753.Google Scholar
Grauer, Z., Avnir, D. & Yariv, S. (1984) Adsorption characteristics of rhodamine 6G on montmorillonite and laponite, elucidated from electronic absorption and emission spectra. Can. J. Chem. 62, 18891894.Google Scholar
Grauer, Z., Malter, A.B. & Yariv S, (1987) Sorption of rhodamine B by montmorillonite and laponite. Coll. Surf. 25, 4165.Google Scholar
Kalyanasundaram, K. (1987). Photochemistry in Microheterogeneous Systems. Academic Press, New York.Google Scholar
Kasha, M., Rawls, H.R. & El-Bayoumi, M.A. (1965) The exciton model in molecular spectroscopy. Pure Appl. Chem. 11, 371392.Google Scholar
Laszlo, P. (1991) Catalysis of organic reactions by inorganic solids. Surf. Sci. Ser. 38, 437459.Google Scholar
López Arbeloa, I. (1981) Dimeric and trimeric states of the fluoresceing dianion. J. Chem. Soc., Faraday Trans. 2, 77, 17251733.Google Scholar
López Arbeloa, F., Ruiz Ojeda, P. & López Arbeloa, I. (1988) Dimerization and trimerization of rhodamine 6G in aqueous solution. J. Chem. Soc., Faraday Trans. 2, 84, 19031912.Google Scholar
López Arbeloa, F., Urrecha Aguirresacona, I. & López Arbeloa, I. (1989) Influence of the molecular structure and the nature of the solvent on the absorption and fluorescence characteristics of rhodamines. Chem. Phys. 130, 371378.Google Scholar
López Arbeloa, F., Llona Gonz∼ilez, I., Ruiz Ojeda, P. & López Arbeloa, I. (1982) Aggregate formation of rhodamine 6G in aqueous solution. J. Chem. Soc., Faraday Trans. 2, 78, 989994.CrossRefGoogle Scholar
López Arbeloa, F., López Arbeloa, T., Tapia Estévez M,J. & López Arbeloa, I. (1991) Photophysics of rhodamines. Molecular structure and solvent effects. J. Phys. Chem. 95, 22032208.Google Scholar
López Arbeloa, F., Tapia Estévez, M.J., López Arbeloa, T. & López Arbeloa, I. (1995) Adsorption of rhodamine 6G on saponite. A comparative study with other rhodamine 6G-smectite aqueous suspensions. Langmuir, 11, 32ll-3217.Google Scholar
McRae, E.G. & Kasha, M. (1964) Physical Processes in Radiation Biology, pp. 23–42. Academic Press, New York.Google Scholar
Murray, H.H. (1991) Overview – clay minerals applications. Appl. Clay Sci. 5, 379395.CrossRefGoogle Scholar
Newman, A.C.D. (1987) Chemistry of Clays and Clay Minerals. Mineralogical Society, London.Google Scholar
Niemeyer, J., Thieme, J., Guttmann, P., Wilhein, T., Rudolph, D. & Schamahl, G. (1994) Direct imaging of aggregates in aqueous clay-suspensions by X-ray microscopy. Prog. Colloid Polym. Sci. 95, 139142.Google Scholar
Schoonheydt, R.A. (1981) Ultraviolet and visible light spectroscopy. Pp. 163–189 in: Advanced Techniques for Clay Mineral Analysis. (Fripiat, J.J., editor). Elsevier, Amsterdam.Google Scholar
Schoonheydt, R.A., Cenens, J. & De Schrijver, F.C. (1986) Spectroscopy of proflavine adsorbed on clays. J. Chem. Soc., Faraday Trans. 1, 82, 281289.Google Scholar
Tapia Estévez, M.J., López Arbeloa, F., López Arbeloa, T. & López Arbeloa, I. (1993) Absorption and fluorescence properties of rhodamine 6G adsorbed on aqueous suspensions of Wyoming montmorillonite. Langmuir, 9, 36293634.Google Scholar
Tapia Estévez, M.J., López Arbeloa, F., López Arbeloa, T. & López Arbeloa, I. (1994b) On the monomeric and dimeric states of rhodamine 6G adsorbed on laponite B surfaces. J. Coll. lntetf. Sci. 162, 412417.Google Scholar
Tapia Estévez, M.J., López Arbeloa, F., López Arbeloa, T. & López Arbeloa, I. (1995) Characterization of rhodamine 6G adsorbed onto hectorite by electronic spectroscopy. J. Coll. lnterf Sci. 171, 439445.CrossRefGoogle Scholar
Tapia Estévez, M.J., López Arbeloa, F., López Arbeloa, T., López Arbeloa, I. & Schoonheydt, R.A. (1994a) Spectroscopic study of the adsorption of rhodamine 6G on Laponite B for low loadings. Clay Miner. 29, 105114.Google Scholar
Theng, B.K.G. (1974) The Chemistry of Clay-Organic Reactions. Adam Hilger, London.Google Scholar
Thomas, J.K. (1984) The Chemistry of Excitation Chemistry. ACS Monograph 181, Washington.Google Scholar
Thompson, D.W. & Butterworth, J.T. (1992) The nature of laponite and its aqueous dispersion. J. Coll. Interf. Sci. 151, 236243.Google Scholar
Yariv, S. (1992) Wettability of clay minerals. Pp. 279–326 in: Modern Approaches to Wettability: Theory and Applications. (Malcolm, E., Schrader, E. & Loeb, G., editors). Plenum Press, New York.Google Scholar
Yariv, S., Nasser, A. & Bar-on, P. (1990) Metachromasy in clay minerals. J. Chem. Soc., Faraday Trans. 86, 15931598.Google Scholar