Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T01:37:35.928Z Has data issue: false hasContentIssue false

Natural acid sulphate alteration in bentonites (Cabo de Gata, Almeria, SE Spain)

Published online by Cambridge University Press:  09 July 2018

J. A. Martínez
Affiliation:
Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
C. Jiménez de Cisneros
Affiliation:
Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
E. Caballero*
Affiliation:
Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
*

Abstract

This study is located on the bentonite outcrop of ‘El Toril’ (Cabo de Gata, Almeria, Spain), where acid solutions have resulted in an alteration front that has caused physical, chemical and mineralogical changes in the bentonite material. The main objective is to assess these changes and to draw a model of evolution of this front in the outcrop. The most important chemical and mineralogical changes observed consist mainly of the loss of mass in the bentonite, the formation of kaolinite, the precipitation of jarosite and alunite from leachates and important changes in the rare earth element distribution pattern. No sulphurs have been identified in the pyroclastic rock at the top of the outcrop, but the presence of dissolution marks and the high concentrations of As, Pb and V in the rock overlying the bentonite point towards the existence, in principle, of these sulphurs and suggest that meteoric alteration is mainly responsible for the genesis of the outcrop.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arribas, A., Cunningham, C.G., Rytuba, J.J., Rye, R.O. & Podwysocki, M.H. (1995) Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Economic Geology, 90, 795822.Google Scholar
Barth, T.W. (1948) Oxygen in rocks: a basis for petrographic calculations. Journal of Geology, 56, 6061.Google Scholar
Barahona, E. (1974) Arcillas para ladrilleria de la Provincia de Granada. Tesis doctoral, Universidad de Granada (monografía n° 49).Google Scholar
Bauer, A., Schäfer, T., Dohrmann, R., Hoffmann, H. & Kim, J.I. (2001) Smectite stability in acid salt solutions and the fate of Eu, Th and U in solution. Clay Minerals, 36, 93103.CrossRefGoogle Scholar
Bellon, H., Bordet, P. & Montenat, C. (1983) Chronologie du magmatisme néogene des Cordilléres Bétiques (espagne meridionale). Bulletin Societé Geologique de France, 25, 205217.Google Scholar
Bird, M.I., Andrew, A.S., Chivas, A.R. & Lock, D.E. (1989) An isotopic study of surficial alunite in Australia 1: Hydrogen and sulphur isotopes. Geochimica et Cosmochimica Acta, 53, 32233237.Google Scholar
Caballero, E. (1985) Quimismo del proceso de bentonitización en la region vol cánica de Cabo de Gata (Almería). PhD dissertation, Universidad de Granada, Spain, 328 pp.Google Scholar
Caballero, E., Reyes, E., Yusta, A., Huertas, F. & Linares, J. (1985a) Las bentonitas de la zona sur de Cabo de Gata, Almería. Geoquímica y Mineralogía. Acta geológica Hispánica, 20, 267287.Google Scholar
Caballero, E., Reyes, E., Linares, J. & Huertas, F. (1985b) Hydrothermal solutions related to bentonite genesis, Cabo de Gata region, Almeria, SE Spain. Mineralogica et Petrográfica Acta, 29-A, 187196.Google Scholar
Caballero, E., Reyes, E., Delgado, A., Huertas, F. & Linares, J. (1992) The formation of bentonite: mass balance effects. Applied Clay Science, 6, 265276.Google Scholar
Caballero, E., Jimenez de Cisneros, C., Huertas, F.J., Huertas, F., Pozzuoli, A. & Linares, J. (2005) Bentonites from Cabo de Gata, Almería, Spain: a mineralogical and geochemical overview. Clay Minerals, 40, 463480.Google Scholar
Coleman, M.L. & Moore, M.P. (1978) Direct reduction of sulfates to sulphur dioxide for isotopic analysis. Analytical Chemistry, 50, 15941595.Google Scholar
Cuevas, J., Leguey, S. & Medina, J.A. (1986) The formation of chert, jasper and quartz rocks from hydrothermal alteration and weathering of volcanic rocks in Rodalquilar (Almería, SE of Spain). Pp. 849861 in: Proceedings of the International Meeting Geochemistry Earth Surface Processes and Mineral Formation (Rodriguez-Clemente, R. and Tardy, Y., editors). CSIC-CNRS, Madrid.Google Scholar
Cullers, R.L., Chaudhury, S., Arnold, B., Lee, M. & Wolfe, C. (1975) Rare earth distributions in clay minerals and in the clay-sized fraction of the Lower Permian Havensville and Eskridge shales of Kansas and Oklahoma. Geochimica et Cosmochimica Acta, 39, 16911703.Google Scholar
Cunningham, C.G., Rye, R.O., Steven, T.A. & Mehnert, H.H. (1984) Origins and exploration significance of replacement and vein-type alunite deposits in the Marysvale volcanic field, west central Utah. Economic Geology, 79, 5071.CrossRefGoogle Scholar
Cunningham, C.G., Arribas, A. Jr., Rytuba, J.J. & Arribas, A. (1990) Mineralized and unmineralized calderas in Spain; Part 1, evolution of the Los Frailes Caldera. Mineralium Deposita, 25, S21S22.Google Scholar
De la Fuente, S. (2000) Estudio experimental de la formacion de un interestratificado esmectita-ilitapor alteracion hidrotermal de una toba volcánica. PhD thesis, Universidad de Granada, Spain, 189 pp.Google Scholar
De Putter, T., Bernard, A., Perruchot, A., Nicaise, D. & Dupuis, C. (2000) Low-temperature acid weathering in Newhaven, Sussex, United Kingdom, and its application to theoretical modelling in radioactive waste-disposal sites. Clays and Clay Minerals, 40, 238246.Google Scholar
Di Battistini, G., Toscani, L., Lacarino, S. & Villa, I.M. (1987) K/Ar ages and the geological setting of calcalkaline volcanic rocks from Sierra de Gata, SE Spain. Neues Jahrbuchfür Mineralogie Monatshefte, H8, 337383.Google Scholar
Fernandez Soler, J.M. (1992) El volcanismo calcoalcalino de Cabo de Gata (Almería). PhD dissertation, Universidad de Granada, Spain, 243 pp.Google Scholar
Field, C.W. (1966) Sulfur isotopic method for discriminating between sulfates of hypogene and supergene origin. Economic Geology, 61, 14281435.Google Scholar
Field, C.W. & Gustafson, L.B. (1976) Sulfur isotopes in the porphyry copper deposit at El Salvador, Chile. Economic Geology, 71, 15331548.Google Scholar
Field, C.W. & Lombardi, G. (1972) Sulfur isotopic evidence for the supergene origin of alunite deposits. Mineralium Deposita, 7, 113125.CrossRefGoogle Scholar
Fleet, A.J. (1984) Aqueous and sedimentary geochemistry of the rare earth elements. Pp. 343373 in: Rare Earth Element Geochemistry (Henderson, P., editor). Developments in Geochemistry series, 2. Elsevier, Amsterdam, New York.CrossRefGoogle Scholar
Foster, M. (1960) Interpretation of the composition of trioctahedral micas. US Geological Survey, Professional Paper, 354B, 1143.Google Scholar
Friedrich, G. (1960) Petrographische und erzmikroskopische Beobachtungen an der Goldlagerstätte Rodalquilar. Prov. Almería/Spanien. Neues Jahrbuch fur Mineralogie, 94, 208227.Google Scholar
Fulignati, P., Gioncada, A. & Sbrana, A. (1999) Rare-earth element (REE) behaviour in the alteration facies of the active magmatic-hydrothermal system of Vulcano (Aeolian Islands, Italy). Journal of Volcanology and Geothermal Research, 88, 325342.Google Scholar
Goldschmidt, V.M. (1923) Geochemische Verteilung sgesetze der elemente (1). Videnskapsselskaps Skrifter I. Matematisk-Naturvidenskapelig Klasse, 3, 117.Google Scholar
Goldschmidt, V.M. (1954) Geochemistry. Claredon Press, Oxford, UK, 730 pp.Google Scholar
Grim, R.E. & Güven, N. (1978) Bentonites, Geology, Mineralogy, Properties and Uses. Elsevier Science Publishers, Amsterdam.Google Scholar
Hidaka, H. & Gauthier-Lafaye, F. (2000) Redistribution of fissiogenic and nonfissiogenic REE, Th and U in and around natural fission reactors at Oklo and Bangombé, Gabon. Geochimica et Cosmochimica Acta, 64, 20932108.Google Scholar
Huertas, F.J., Huertas, F. & Linares, J. (1991) Evaluacion de las fases no cristalinas en cerámicas arqueológicas en cerámicas arqueológicas por DRX. Boletín de la Sociedad española de Mineralogía, 14, 7178.Google Scholar
Inoue, A. (1995) Formation of clay minerals in hydrothermal environments. Pp. 268330 in: Origin and Mineralogy of Clays (Velde, B., editor). Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
Inoue, A. & Utada, M. (1991) Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan. American Mineralogist, 76, 628640.Google Scholar
Le Bas, M.J., Le Maitre, R.W. & Streckeisen, R. (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745750.Google Scholar
Le Maitre, R.W. (1989) A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 193 pp.Google Scholar
Leone, G., Reyes, E., Cortecci, G., Pochini, A. & Linares, J. (1983) Genesis of bentonites from Cabo de Gata, Almería, Spain: A stable isotope study. Clay Minerals, 18, 227238.Google Scholar
Lewis, A.J., Palmer, M.R., Sturchio, N.C. & Kemp, A.J. (1997) The rare earth element geochemistry of acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochimica et Cosmochimica Acta, 61, 695706.Google Scholar
Linares, J. (1985) The process of bentonite formation in Cabo de Gata, Almería, Spain. Mineralogica Petrografica Acta, 29A, 1733.Google Scholar
Linares, J. (1987) Chemical evolutions related to the genesis of hydrothermal smectites, Almería, SE Spain. Pp. 567584 in: Geochemistry and Mineral Formation in the Earth Surface (Rodríguez, R. & Tardy, Y., editors). CSIC-CNRS, Madrid.Google Scholar
Lodder, W. (1966) Gold-alunite deposits and zonal wallrock alteration near Rodalquilar, SE Spain. PhD thesis, University of Amsterdam, The Netherlands.Google Scholar
Martín Ramos, J.D. (1990) Programa de control y análisis del difractómetro de Rayos X. Dep. Leg. M-11719.Google Scholar
Martín-Vivaldi, J.L., Sierra, J. & Leal, J. (1971) Some aspects of the mineralization and wall-rock alteration in the Rodalquilar goldfield, SE Spain. Society of Mining Geology Japan, Spec. Issue 2, 145-152.Google Scholar
Martínez, J.A., Caballero, E., Jimenez de Cisneros, C. & Linares, J. (1998) Estudio del efecto de un frente ácido sobre la barrera de arcilla. Análogos naturales en la region de Cabo de Gata, Almería. Intern inform CSIC, 22 pp.Google Scholar
Martínez, J.A., Caballero, E., Jiménez de Cisneros, C., & Linares, J. (2000) Degradación de un material arcilloso por percolación de soluciones ácidas. Cadernos do Laboratorio Xeoloxico de Laxe, 25, 6769.Google Scholar
McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Pp. 169200 in: Geochemistry and Mineralogy of Rare Earth Elements (Lipin, B.R. and Mckay, G.A., editors). Reviews in Mineralogy, 21. Mineralogical Society of America, Washington, D.C. Google Scholar
Moore, D.M. & Reynolds, R.C. Jr. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK, 332 pp.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1128 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Monograph 6, Mineralogical Society, London.Google Scholar
Pelayo, M., Villar, M.V., Fernandez, A.M. & Perez del Villar, L. (1999) Estudio mineralogico, geoquímica, fisico-mecánico y de las aguas intersticiales de muestras procedentes de los yacimientos bentoníticos de Morrón de Mateo, Pozo Usero, El Toril, San José y El Corralote. Informe interno CIEMAT, 38 pp.Google Scholar
Pelayo, M., Martínez, J.A. & Perez del Villar, L. (2000) Effects of acid solutions on the mineralogical and geochemical characteristics of the bentonita from the ‘El Toril’ deposit (Almería, Spain). In: Extended abstracts of the First Latin-American Clay Conference (Gomez, C.S.F., editor), vol. 2.Google Scholar
Puy, J.L., Huertas, F. & Linares, J. (1974) Estudio geoquímico de las alteraciones de rocas volcánicas en el sector de Rodalquilar. Cabo de Gata, Almería. Estudios Geológicos, 30, 337345.Google Scholar
Reyes, E. (1977) Mineralogía y geoquímica de las bentonitas de la zona norte de Cabo de Gata (Almería). PhD dissertation, Universidad de Granada, Spain.Google Scholar
Reyes, E., Huertas, F. & Linares, J. (1978) Bentonitas de Andalucía (Espana): yacimientos hidrotermales del norte de Rodalquilar (Almería). Pp. 125147 in: Proceedings of the 1st International Congress on Bentonites 1978, Vol. I, Sassari-Caglari (Italy).Google Scholar
Richardson, S.M. & McSween, H.Y. Jr. (1989) The crust and mantle as a geochemical system. Pp. 327373 in: Geochemistry, Pathways and Processes (Richarson, S.M. & McSween, H.Y., editors). Prentice Hall, New Jersey.Google Scholar
Robinson, B.W. & Kusabe, M. (1975) Quantitative preparation of sulphur dioxide for 34S/32S analyses from sulfides by combustion with cuprous oxide. Analytical Chemistry, 47, 11791181.Google Scholar
Rye, R.O. (1993) The evolution of magmatic fluids in the epithermal environment: the stable isotope perspective. Economic Geology, 88, 733753.Google Scholar
Rye, R.O., Bethke, P.M. & Wasserman, M.D. (1992) The stable isotope geochemistry of acid sulphate alteration. Economic Geology, and the Bulletin of the Society of Economic Geologists, 87, 225262.Google Scholar
Rytuba, J.J., Arribas, A. Jr., Cunningham, C.G., McKee, E.H., Podwysocki, M.H., Smith, J.G., Kelly, W.C. & Arribas, A. (1990) Mineralized and unmineralized calderas in Spain: Part II: Evolution of the Rodalquilar caldera complex and associated gold-alunite deposits. Mineralium Deposita, 25, S29S35.CrossRefGoogle Scholar
Säanger-von Oepen, P., Friedrich, G. & Vogt, J.H. (1989) Fluid evolution, wall-rock alteration, and ore mineralization associated with the Rodalquilar epithermal gold-deposit in southeast Spain. Mineralium Deposita, 24, 235243.Google Scholar
Säanger-von Oepen, P., Friedrich, G. & Kisters, A. (1990) Comparison between fluid characteristic of the Rodalquilar and two neigbouring epithermal gold deposits in Spain. Mineralium Deposita, 25, S36-S41.Google Scholar
Shelley, D. (1993) Igneous and Metamorphic Rocks under the Microscope. Chapman & Hall, London, 445 pp.Google Scholar
Taylor, S.R. & McLennan, S.M. (1985) The Continental Crust: Its composition and Evolution; an Examination of Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific, Oxford, UK, 312 pp.Google Scholar
Vikre, P.G. (1987) Paleohydrology of Buckskin Mountain, National district, Humbolt Country, Nevada. Economic Geology, 82, 934950.Google Scholar
White, W.M., Dupre, B. & Vidal, P. (1985) Isotope and trace element geochemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean. Geochimica et Cosmochimica Acta, 49, 18751886.CrossRefGoogle Scholar
Wilson, M.J. (1987) A Handbook of Determinative Methods in Clay Mineralogy. Blackie, Glasgow, 308 pp.Google Scholar
Zeck, H.P., Maluski, H. & Kristensen, A.B. (2000) Revised geochronology of Neogene calc-alkaline volcanic suite in Sierra de Gata, Alborán volcanic province, SE Spain. Journal of the Geologocial Society, 157, 7181.Google Scholar