Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T18:58:20.740Z Has data issue: false hasContentIssue false

Mixed-layer illite-smectite in the Kinnekulle K-bentonite, northern Baltic Basin

Published online by Cambridge University Press:  09 July 2018

P. Somelar*
Affiliation:
Department of Geology, University of Tartu, Vanemuise 46, Tartu 51014, Estonia
K. Kirsimäe
Affiliation:
Department of Geology, University of Tartu, Vanemuise 46, Tartu 51014, Estonia
J. Środoń
Affiliation:
Institute of Geological Sciences PAN, Senacka 1, 31002 Kraków, Poland
*

Abstract

The composition and particle morphology of diagenetic mixed-layer illite-smectite (I-S) in the shallow buried Ordovician Kinnekulle K-bentonite were studied to understand the process of illitization in the Baltic Basin. The same K-bentonite bed from 12 different locations in the Basin was sampled and analysed by means of X-ray diffraction (XRD), atomic-force microscopy (AFM) and K-Ar dating. Illite-smectite in the samples was identified as a highly illitic R1 type illite-smectite vermiculite (high-charge smectite) mixed-layer mineral with 63–78% illitic layers. Illite-smectite was characterized by log-normally distributed thin particles with an area-weighted mean thickness varying from 1.9 to 3.6 nm and 2.1 to 3.8 nm by XRD-PVP and AFM analysis, respectively. The K-Ar diagenetic ages of the mixed-layer minerals suggest an illitization age of 370 to 420 Ma that agrees with the latest phase of the Caledonian orogeny. Illitization of the Kinnekulle bentonite was probably driven by the intrusion of K-rich fluids.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alm, E., Sundblad, K. & Huhma, H. (2005) Srn-Nd isotope determinations of low-temperature fluoritecalcite- galena mineralization in the margins of the Fennosdandian Shield. Report of activities carried out during 2004. SKB R-report R-05-66. Swedish Nuclear Fuel and Waste Management Co. (SKB), Stockholm, Sweden.Google Scholar
Bauer, A. & Velde, B. (1999) Smectite transformation in high molar KOH solutions. Clay Minerals, 34, 259273.Google Scholar
Bergström, S.M., Huff, W.D., Kolata, D.R. & Bauert, H. (1992) Silurian K-bentonites in the Iapetus region: a preliminary event-stratigraphic and tectonomagmatic assessement. Geologiska Fbreningens i Stockholm Forhandlingar, 114, 327334.Google Scholar
Bergström, S.M., Huff, W.D., Kolata, D.R. & Bauert, H. (1995) Nomenclature, stratigraphy, chemical fingerprinting and areal distribution of some Middle Ordovician K-bentonites in Baltoscandia. Geologiska Föreningens i Stockholm Förhandlingar, 117, 113.Google Scholar
Bergström, S.M., Huff, W.D. & Kolata, D.R. (1998) Early Silurian (Llandoverian) K-bentonites discovered in the southern Appalachian thrust belts, eastern USA: Stratigraphy, geochemistry, and tectonomagmatic and paleogeographic implications. Geologiska Föreningens i Stockholm Förhandlingar, 120, 149158.Google Scholar
Blum, A.E. (1994) Determination of illite/smectite particle morphology using scanning. Pp. 172202 in: Scanning Probe Microscopy of Clay (Nagy, K.L. & Blum, A.E., editors). The Clay Minerals Society, Chantilly, VA, USA.Google Scholar
Chaudhuri, S., Środoń, J. & Clauer, N. (1999) K-Ar dating of illitic fractions of Estonian ‘Blue Clay’ treated with alkylammonium cations. Clays and Clay Minerals, 47, 96102.Google Scholar
Clauer, N. & Chaudhuri, S. (1995) Clays in Crustal Environments. Isotope Dating and Tracing, 359 pp. Springer, Berlin-Heidelberg, Germany.Google Scholar
Clauer, N., Zwingmann, H. & Gorokhov, I.M. (2003) Postdepositional Evolution of Platform Claystones Based on a Simulation of Thermally Induced Diffusion of Radiogenic 40Ar from Diagenetic Illite. Journal of Sedimentary Research, 73, 5863.Google Scholar
Deconinck, J.F., Strasser, A. & Debrabant, P. (1988) Formation of illitic minerals at surface temperatures in Purbeckian sediments (Lower Berriasian. Swiss and French Jura). Clay Minerals, 23, 91103.CrossRefGoogle Scholar
Eberl, D.D., Drits, V., Środoń, J. & Nüesch, R. (1996) MudMaster: A program for calculating crystallite size distributions and strain from the shapes of X-ray diffraction peaks: U.S. Geological Survey Open-File Report 96-171. Google Scholar
Eberl, D.D., Nüesch, R., Šuchá, V. & Tsipursky, S. (1998) Measurement of fundamental illite particle thicknesses by X-ray diffraction using PVP-10 intercalation. Clays and Clay Minerals, 46, 8997.Google Scholar
Gorokhov, I. M., Clauer, N. & Turchenko, T. L. (1994) Rb —Sr Systematics of Vendian— Cambrian Claystones from the East European Platform: Implications for a Multi-Stage Illite Evolution. Chemical Geology, 111, 7189.Google Scholar
Grotek, I. (1999) Origin and thermal maturity of the organic matter in the Lower Palaeozoic rocks of the Pomeranian Caledonides and their foreland (northern Poland). Geological Quarterly, 43, 297308.Google Scholar
Harris, M.T., Sheehan, P.M., Ainsaar, L., Hints, L., Männik, L.P., Nõlvak, J. & Rubel, M. (2004) Upper Ordovician sequences of western Estonia. P alaeo geography, Palaeoclimatology, Palaeoecology, 210, 135148.Google Scholar
Hendriks, B., Andriessen, P., Huigen, Y., Leighton, C., Redfield, T., Murrell, G., Gallagher, K. & Nielsen, S.B. (2007) A fission track data compilation for Fennoscandia. The Norwegian Journal of Geology, 87, 143155.Google Scholar
Hoffman, J. & Hower, R.J. (1979) Clay minerals assemblages as low grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, USA. SEPM Special Publication, 26, 5579.Google Scholar
Hogdahl, K., Gromet, L.P. & Broman, C. (2001) Low P-T Caledonian resetting of U-rich Paleoproterozoic zircons, central Sweden. American Mineralogist, 86, 534546.Google Scholar
Hower, R.J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanisms of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Huff, W.D. (1983) Correlation of Middle Ordovician K-bentonites based on chemical fingerprinting. Journal of Geology, 91, 657669.Google Scholar
Huff, W.D. & Bergstrom, S.R. (1992) Gigantic Ordovician ash fall in North America and Europe: biological, tectonomagnetic, and event-stratigraphic significance. Geology, 20, 875878.2.3.CO;2>CrossRefGoogle Scholar
Huff, W.D., Kolata, D.R., Bergström, S.M. & Zhang, Y-S. (1996) Large-magnitude Middle Ordovician volcanic ash falls in North America and Europe: dimensions, emplacement and post-emplacement characteristics. Journal of Volcanology and Geothermal Research, 73, 285301.Google Scholar
Huff, W.D., Müftüoglu, E., Kolata, D.R. & Bergstroom, S.M. (1999) K-bentonite bed preservation and its event stratigraphic significance. Ada Univerisatis Carolinae-Geologica, 43, 491493.Google Scholar
Huff, W.D., Müftüoglu, E., Bergström, S.M. & Kolata, D.R. (2004) Resolving questions of consanguinity between the late Ordovician Deicke, Millbrig and Kinnekulle K-bentonites in North America and Baltoscandia [Abstract]. Geological Society of America Abstracts with Programs, 36, 246.Google Scholar
Jones, G.D., Whitaker, F.F., Smart, P.L. & Sanford, W.E. (2002) Fate of reflux brines in carbonate platforms. Geology, 30, 371374.Google Scholar
Kendrick, M.A., Burgess, R., Harrison, D. & Bjørlykke, A. (2005) Noble gas and halogen evidence for the origin of Scandinavian sandstone-hosted Pb-Zn deposits. Geochimica et Cosmochimica Acta, 69, 109129.Google Scholar
Kiipli, E. & Kallaste, T. (1996) Geochemical characterization of some Estonian metabentonites. Proceedings of the Estonian Academy of Sciences, Geology, 45, 6877.Google Scholar
Kiipli, T., Kiipli, E., Kallaste, T., Hints, R., Somelar, P. & Kirsimäe, K. (2007) Altered volcanic ash as an indicator of marine environment, reflecting pH and sedimentation rate — example from the Ordovician Kinnekulle bed of Baltoscandia. Clays and Clay Minerals, 55, 177188.CrossRefGoogle Scholar
Kirsimäe, K. & Jorgensen, P. (2000) Mineralogical and Rb-Sr isotope studies of low-temperature diagenesis of Lower Cambrian clays of the Baltic Palaeobasin of North Estonia. Clays and Clay Minerals, 48, 95105.Google Scholar
Kirsimäe, K., Kalm, V. & Jorgensen, P. (1999a) Diagenetic transformation of clay minerals in Lower Cambrian argillaceous sediments of North Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 48, 1534.Google Scholar
Kirsimäe, K., Jørgensen, P. & Kalm, V. (1999b) Low-temperature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Minerals, 34, 151163.CrossRefGoogle Scholar
Laškovas, J. (2000) The Sedimentation Environments of the Ordovician Basin in the South-western margin of the East European Platform and Lithogenesis of Deposits. Institute of Geology, Vilnius, Estonia.Google Scholar
Lindblom, S. (1986) Textural and fluid inclusion evidence for ore deposition in the Pb-Zn deposit at Laisvall, Sweden. Economic Geology, 81, 4664.Google Scholar
Lindgreen, H., Drits, V.A., Sakharov, B.A., Salyn, A.L., Wrang, P. & Dainyak, L.G. (2000) Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic Sea. American Mineralogist, 85, 12231238.Google Scholar
Min, K., Renne, P.R. & Huff, W.D. (2001) 40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia. Earth and Planetary Science Letters, 185, 121134.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. 2nd edition. Oxford University Press, Oxford, UK.Google Scholar
Nehring-Lefeld, M., Modliński, Z., & Swadowska, E., (1997) Thermal evolution of the Ordovician in the western margin of the East—European Platform: CAI and Ro data. Geological Quarterly, 41, 129138.Google Scholar
Plançon, A. & Drits, V.A. (2000) Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- and three-component mixed-layer minerals. Clays and Clay Minerals, 48, 5762.Google Scholar
Pollastro, R. (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbon bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41, 119133.Google Scholar
Pusch, R. & Madsen, F.T. (1995) Aspects of the illitization of of Kinnekulle bentonites. Clays and Clay Minerals, 43, 261270.Google Scholar
Raidla, V., Kirsimäe, K, Bityukova, L., Jõeleht, A., Shogenova, A. & Šliaupa, S. (2006) Lithology and diagenesis of the poorly consolidated Cambrian siliciclastic sediments in the northern Baltic Sedimentary Basin. Geological Quarterly, 50, 1122.Google Scholar
Sakharov, B.A., Lindgreen, H., Salyn, A.L. & Drits, V.A. (1999) Mixed-layer kaolinite-illite-vermiculite in North Sea shales. Clay Minerals, 34, 333344.Google Scholar
Sandier, A. & Harlavan, Y. (2006) Early diagenetic illitization of illite-smectite in Cretaceous sediments (Israel): evidence from K-Ar dating. Clay Minerals, 41, 637658.Google Scholar
Sandier, A. & Saar, H. (2007) R ⩾ I-type illite-smectite formation at near-surface temperatures. Clay Minerals, 42, 245253.Google Scholar
Sandier, A., Harlavan, Y. & Steinitz, G. (2004) Early formation of K-feldspar in shallow-marine sediments at near-surface temperatures (southern Israel): evidence from K-Ar dating. Sedimentology, 51, 323338.Google Scholar
Schoonmaker, J., Mackenzie, F.T. & Speed, R.C. (1986) Tectonic implications of illite/smectite diagenesis, Brazilian accretionary prism. Clays and Clay Minerals, 34, 465472 Google Scholar
Sherlock, S.C., Lucks, T., Kelley, S.P. & Barnicoat, A. (2005) A high resolution record of multiple diagenetic events: ultraviolet laser microprobe Ar/Ar analysis of zoned K-feldspar overgrowths. Earth and Planetary Science Letters, 238, 329341.CrossRefGoogle Scholar
Singer, A. & Stoffers, P. (1980) Clay mineral digenesis in two east African lake sediments. Clay Minerals, 15, 291307.Google Scholar
Środoń, J. (1999) Extracting K-Ar ages from shales: a theoretical test. Clay Minerals, 33, 375378.Google Scholar
Środoń, J. & Clauer, N. (2001) Diagenetic history of Lower Palaeozoic sediments in Pomerania (northern Poland) traced across the Teisseyre-Tornquist tectonic zone using mixed-layer illite-smectite. Clay Minerals, 36, 1527.Google Scholar
Środoń, J., Eberl, D.D. & Drits, V.A. (2000) Evolution of fundamental-particle size during illitization of smectite and implications for reaction mechanism. Clays and Clay Minerals, 48, 446458.CrossRefGoogle Scholar
Środoń, J., Clauer, N. & Eberl, D.D. (2002) Interpretation of K-Ar dates of illitie clays from sedimentary rocks aided by modelling. American Mineralogist, 87, 14281535.Google Scholar
Środoń, J., Clauer, N., Banas, M. & Wojtowicz, A. (2006) K-Ar evidence for a Mesozoic thermal event superimposed on burial diagenesis of the Upper Silesia Coal Basin. Clay Minerals, 41, 669690.Google Scholar
Steiger, R.H. & Jäger, E. (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359362.CrossRefGoogle Scholar
Talyzina, N.M., Moldowan, J.M., Johannisson, A. & Fago, F.J. (2000) Affinities of Early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers. Review of Paleobotany and Palynology, 108, 3753.Google Scholar
Turner, C.E. & Fishman, H.S., (1991) Jurassic lake T'oo'dichi': a large alkaline, saline lake, Morrison formation, eastern Colorado Plateau. Geological Society of America Bulletin, 103, 538558.2.3.CO;2>CrossRefGoogle Scholar
Uhlik, P., Sucha, V., Eberl, D.D., Puškelová, L'. & Çaploviçová, M. (2000) Evolution of pyrophyllite particle sizes during dry grinding. Clay Minerals, 35, 423432.CrossRefGoogle Scholar
Velde, B. & Brusewitz, A.M. (1982) Metasomatic and nonmetasomatic low grade metamorphism of Ordovician meta-bentonites in Sweden. Geochimica et Cosmochimica Ada, 46, 447452.Google Scholar
Velde, B. & Byström-Brusewitz, A.-M. (1972) The transformation of natural clay minerals at elevated pressures and temperatures. Geologiska Föreningens i Stockholm Förhandlingar, 94, 449458.Google Scholar
Zdanaviçiūte, O. (1997) New data on thermal maturity of organic matter in source rocks. Lithosphere, 1, 7679 (in Lithuanian).Google Scholar