Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T16:48:53.961Z Has data issue: false hasContentIssue false

Kaolin fractal dimension. Comparison with other properties

Published online by Cambridge University Press:  09 July 2018

P. Aparicio*
Affiliation:
Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, Apdo. 553, 41071, Sevilla
J . L. Pérez-Bernal
Affiliation:
Departamento de Química Analítica, Universidad de Sevilla, Apdo. 553, 41071 Sevilla, Spain
E. Galán
Affiliation:
Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, Apdo. 553, 41071, Sevilla
M. A. Bello
Affiliation:
Departamento de Química Analítica, Universidad de Sevilla, Apdo. 553, 41071 Sevilla, Spain

Abstract

The fractal dimension values of several kaolins with different structural order and properties have been calculated from N2-adsorption isotherm data according to the Neimark method. All kaolins show a fractal regime in the same nitrogen relative pressure range, with fractal dimension values ranging between 2.38 and 2.57.

The correlation between fractal dimension and other kaolin characteristics (structural order of kaolinite, BET surface area, brightness and particle-size distribution) was determined. The correlation matrix shows that the fractal dimension (Ds) is highly correlated with the degree of structural order-disorder and is also moderately correlated with the particle-size distribution and brightness. No correlation was observed between BET and Ds, probably because the first is a measurement of the accessible surface while Ds represents the scaling properties of the area.

As Ds is a parameter easily calculated and related to the degree of surface heterogeneity, and well correlated with other kaolinite parameters, it can be used to estimate a set of kaolin technical properties for suitability of the kaolin in the paper industry.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aparicio, P. & Galán, E. (1999) Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay Minerals, 47, 12–27 Google Scholar
Aparicio, P., Ferrell, E. & Galán, E. (1999) A new kaolinite crystallinity index from mathematical modelling of XRD data. Abstracts volume of the 9th EUROCLAY conference, p. 57.Google Scholar
Aparicio, P., Ferrell, E. & Galán, E. (2001) Aplicación de la modelización matemática a los diagramas de DRX de la caolinita para mejorar el cálculo de ‘indices de cristalinidad’. Pp. 2129 in: Integración de Cienca- Tecnolo gía de las arcillas en el Contexto Tecnológico-Social del Nuevo Milenio.(J. Pascual Cosp, J. Zapatero Arenzana, Ram, A.J.írez del Valle and Moya García, M.V., editors). Sociedad Española de Arcillas, Málaga, Spain.Google Scholar
Bristow, C.M. (1993)The genesis of the China Clays of South-west England. A Multistage story. Pp. 171203 in: Kaolin, Genesis and Utilization(Murray, H.H., Bundy, W. & Harvey, C., editors). Special Publication, 1. The Clay Minerals Society, Bloomington, Indiana, USA.Google Scholar
Bundy, W.M. (1993) The diverse industrial applications of kaolins. Pp. 4373 in: Kaolin, Genesis and Utilizations.(Murray, H.H., Bundy, W. & Harvey, C., editors). Special Publication, 1. The Clay Minerals Society, Bloomington, Indiana.Google Scholar
Celis, R., Cornejo, J. & Hermosín, M.C. (1996) Surface fractal dimensions of synthetic clay-hydrous iron oxide associations from nitrogen adsorption isotherms and mercury porosimetry. Clay Minerals, 31, 355–363 Google Scholar
De Souza Santos, P. (1993) The use of clay particle morphology studies to characterize industrial clay deposits: examples from Brazil. Clay Minerals, 28, 539–553 Google Scholar
Galán, E. & Martín Pozas, J.M. (1971) Mineralogía de los caolines de La Guardia y El Rosal (Pontevedra, España). Estudios Geológicos, XXVII, 75–80 Google Scholar
Galán, E. & Martín Vivaldi, J.L. (1973) Caolines españoles: Geología, Mineralogía y Génesis. Parte, I.. Boletín Sociedad Española de Cerámica y Vidrio, 12, 7998.Google Scholar
Galán, E., Mattias, P.P. & Galvan, J. (1977) Correlation between crystallinity size, genesis and age of some Spanish kaolinites. K-8, 8 pp. in: Proceedings of the 8th International Kaolin Symposium and Meeting on Alunite, Madrid-Rome(Galán, E., editor). Ministerio de Industria y Energía, Madrid, Spain.Google Scholar
Galán, E., Aparicio, P., González, I. & Miras, A. (1998) Contribution of multivariate analysis to the correlations of some properties of kaolin with its mineralogical and chemical composition. Clay Minerals, 33, 65–75 Google Scholar
Gomes, C., Velho, J.A. & Delgado, H. (1990) Kaolin depo sit s of Por tugal. Geoci ê ncias Rev ista Universidade de Aveiro, 5, 75–89 Google Scholar
Gomes, C., Velho, J.A. & Guimaraes, F. (1994) Kaolin deposits of Mevaiela (Angola) alteration product of anorthosite: assessment of kaolin potentialities for application paper. Applied Clay Science, 9, 97–106 CrossRefGoogle Scholar
Hinckley, D. (1963) Variability in ‘crystallinity’ values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina. Pp. 229235 in: 11th National Conference on Clays and Clay Minerals. Pergamon Press, New York.Google Scholar
Keller, W.D. (1976a,b,c) Scan electron micrographs of kaolin collected from diverse environments of origin –I, II, III. Clays and Clay Minerals, 24, 107–113, 113 –117, 262264.Google Scholar
Keller, W.D. (1977) Scan electron micrograph of kaolins collected from diverse environments of origin – IV. Georgia kaolins and kaolinizing source rocks. Clays and Clay Minerals, 25, 311–346 Google Scholar
Keller, W.D. (1978) Classification of kaolins exemplified by their textures in scan electron micrograph. Clays and Clay Minerals, 26, 1–20 Google Scholar
Lyons, S.C. (1966) Clay. Technical Association, Pulp and Paper Industry Monographs, 30, (Murray, H.H., editor), pp. 57124.Google Scholar
Martin Pozas, J.M. (1975) Análisis cuantitativo de fases cristalinas por DRX. Pp. 7798 in: Mé todo de Debye-Scherrer (Saja, J., editor). ICE, Universidad de Valladolid, Spain.Google Scholar
Murray, H.H. (1976) Clay. Technical Association, Pulp and Paper Indust ry Monogr aphs, 38(Hagemeyer, R.W., editor), pp. 69109.Google Scholar
Neimark, A.V., Hanson, M. & Unger, K. (1993) Fractal analysis of the distribution of high-viscosity fluids in porous supports. The Journal of Physical Chemistry, 97, 6011–6015 Google Scholar
Patterson, C.H. & Murray, H.H. (1975) Clays. Pp. 519585 in: Industrial Minerals and Rocks, 4th edition (Lefond, S.J., editor). American Institute of Mining Engineering, New York.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierre Shale. US Geological Survey, Professional Paper, 391–C, 31 pp.Google Scholar
Stoch, L. (1974) Mineral Ilaste (Clay Minerals), pp. 186 193. Geological Publishers, Warsaw.Google Scholar
Vam Damme, H. (1992) Stacking, deformation and rupture in smec tite clays. Pp. 4588 in: Conferencias de la XI Reunión Científica de la Sociedad Española de Arcillas(E. Galán & Ortega, M., editors), Madrid.Google Scholar
Van Olphen, H. & Fripiat, J.J. (1979) Data Handbook for Clay Materials and other Non-metallic Minerals. Pergamon Press, Oxford, UK.Google Scholar