Image analyses, carried out on thin sections made in consolidated and sheared kaolinite test pieces, allow the identification of three ‘microstructural domains’: (1) the initial isotropic matrix; (2) a partly anisotropic matrix resulting from simple particle arrangement; and (3) an anisotropic matrix resulting from rearrangement plus flattening and delamination of particles.
In order to explain the micromechanisms of the clay matrix behaviour, this paper proposes to link the ‘microstructural domains’ represented in the e vs. log p Cam-clay diagram and domains of hydraulic conductivity in the k vs. e diagram.
The hydraulic conductivities are calculated following the Kozeny-Carman relations, which take into account the micro-arrangement of particles via a tortuosity calculation. The generation of 2D images shows that the preservation of the isotropic arrangement of particles is limited by a minimum porosity value. A decrease of the porosity value below this limit can be explained only by a progressive anisotropic rearrangement of the particles.
The microtexture behaviour, induced by the superimposition of the compaction, orientation and particle flattening and delamination stages, causes an anisotropy of the hydraulic conductivity which affects (1) the interstitial water flow direction, (2) the rotation of particles itself, and (3) the damage mechanism of the clay.