Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T05:27:29.006Z Has data issue: false hasContentIssue false

Interpretation of orientation polarization in homoionic dry montmorillonite

Published online by Cambridge University Press:  09 July 2018

H. Belarbi
Affiliation:
Laboratoire de Physicochimie de la Matière Condensée - Equipe de Chimie Physique, (UMR 5617 CNRS), Université Montpellier 11, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
A. Haouzi
Affiliation:
Laboratoire de Physicochimie de la Matière Condensée - Equipe de Chimie Physique, (UMR 5617 CNRS), Université Montpellier 11, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
J. C. Giuntini
Affiliation:
Laboratoire de Physicochimie de la Matière Condensée - Equipe de Chimie Physique, (UMR 5617 CNRS), Université Montpellier 11, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
J. V. Zanchetta
Affiliation:
Laboratoire de Physicochimie de la Matière Condensée - Equipe de Chimie Physique, (UMR 5617 CNRS), Université Montpellier 11, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
J. Niezette
Affiliation:
Chimie Macromoléculaire et Chimie Physique, Université de Liège, Institut de Chimie au Sart-Tilman, B4000 Liege, Belgium
J. Vanderschueren
Affiliation:
Chimie Macromoléculaire et Chimie Physique, Université de Liège, Institut de Chimie au Sart-Tilman, B4000 Liege, Belgium

Abstract

From measurements of dielectric losses as a function of frequency and temperature, as well as thermally stimulated depolarization currents, performed on a dry Na-montmorillonite, a qualitative description of the conduction mechanism has been proposed for this type of material. A representative approach related to the polarization phenomenon determined on this material led to the evaluation of the elementary energy Wj, connected with the reorientation of the dipoles during the hopping process. The results show the coherence between the polarization conductivity and the thermally stimulated currents methods.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelouahab, C., Ait-Amar, H., Abretenov, T.Z. & Gaid, A. (1988) Caractéristiques physico-chimiques et structurales de quelques argiles bentonitiques du nord-ouest algérien. Analusis, 16, 292299.Google Scholar
Badot, J.C., Fourrier-Lamer A,, Baffler, N. & Colomban, P. (1987) Phase transitions and dielectric relaxations in superionic protonic conductor HUP (H3OUO2PO4-3H2O) in the broad frequency range (10-2-1010 Hz). J. Phys. 48, 13251336.Google Scholar
Belougne, P., El Hamdaoui, M. & Zanchetta, J.V. (1995) Etude comparée des propriétés de transport électronique d'échantillons massifs et pulvérulents. J. Chim. Phys. 92, 15891611.Google Scholar
Bucci, C. & Fieschi, R. (1964) Ionic thermoconductivity. Method for the investigation of polarization in insulators. Phys. Rev. Letters, 12, 1619.Google Scholar
Calvet, R. (1972) Hydratation de la montmorillonite et diffusion des cations compensateurs. Thèse ès Sciences, Paris.Google Scholar
Colomban, P., Mouchon, E., Belhadj-Tahar, N. & Badot, J.C. (1992) Radio and microwave frequency relations and conductivity in superionic conductor NASICON. Solid State lonics, 53-56, 813824.CrossRefGoogle Scholar
Deroide, B., Bertheville, B. & Zanchetta, J.V. (1995) Transport properties of polycrystalline samples of calcium and magnesium oxides. Experimental and theoretical approach. J. Phys. Chem. Solids, 56, 989994.Google Scholar
Elliot, S.R. (1978) A.C. conductivity due to intimate pairs of charged defect centers. Sol. State Comm. 27, 749751.Google Scholar
Elliot, S.R. (1987) A.C. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135218.Google Scholar
Giuntini, J.C., Jabobker, A. & Zanchetta, J.V. (1985) Etude de l'interaction eau-kaolinite par mesures des permittivit6s complexes. Clay Miner 20, 347365.Google Scholar
Giuntini, J.C., Zanchetta, J.V. & Henn, F. (1988) Model of ac conductivity in protonic conductors. Solid State lonics, 28-30, 142147.CrossRefGoogle Scholar
Giuntini, J.C., Deroide, B., Belougne, P. & Zanchetta, J.V. (1987) Numerical approach of correlated barrier hopping model. Sol. State Comm. 62, 739742.CrossRefGoogle Scholar
Giuntini, J.C., Vanderschueren, J., Zanchetta, J.V. & Henn, F. (1994) Thermally stimulated polarization-depolarization current and polarization conductivity in ionically conducting glasses. Phys. Rev. B 50, 1248912495.CrossRefGoogle ScholarPubMed
Giuntini, J.C., Zanchetta, J.V., Brach, I. & Diaby, S. (1990) Pp. 179–194 in: Advanced Methodologies in Coal Characterisation. Elsevier, Amsterdam.Google Scholar
Ibar, J.P. (1993) Fundamentals of Thermally Stimulated Current and Relaxation Map Analysis. SLP New Canaan.Google Scholar
Jonscher, A.K. (1996) Universal Relaxation Law. Chelsea Dielectric Press, London.Google Scholar
Lacabanne, G., Lamure, A., Teyssedre, G., Bernes, A. & Mourgues, M. (1994) Study of cooperative relaxation modes in complex systems by thermally stimulated current spectroscopy. J. Non-Cryst. Solids, 172-174, 884890.Google Scholar
Long, A.R. (1982) Frequency-dependent loss in amorphous semi-conductors. Adv. Phys. 31, 553–637.Google Scholar
Mamy, J. (1968) Recherches sur l'hydratation de la montmorillonite: propriétés diélectriques et structure dufilm d'eau. Thèse ès Sciences, Paris.Google Scholar
Mering, J. & Glaeser, R. (1954) Sur le role de la valence des cations échangeables dans la montmorillonite. Bull. Soc. Fr. Min. Crist. 77, 519530.Google Scholar
Muir, J. (1954) Dielectric loss in water films adsorbed by some silicate clay minerals. Trans. Faraday Soc. 50, 249254.Google Scholar
Ngai, K.L., Jonscher, A.K. & White, C.T. (1979) On the origin of the universal dielectric response in condensed matter. Nature, 277, 185189.Google Scholar
Nowick, A.S., Lim, B.S. & Aysleyb, A.V. (1994) Nature of the ac conductivity of ionically conducting crystals and glasses. Non-Cryst. Solids, 172–17 4.Google Scholar
ORGM (1972) Résultats des travaux de recherches géologiques effectués sur le gisement d'argiles bentonitiques de M'ZILA. Boumerdes (Algeria).Google Scholar
Pollak, M. (1987) (Editor) Disordered Semi-Conductors CRC, Boca Raton, FL.Google Scholar
Salam, F., Soulayman, S.Sh., Giuntini, J.C. & Zanchetta, J.V. (1996) Frequency-dependent ionic conductivity in (Ag2S)x(GeS2)(1-x) glasses. Sol. State lonics, 83, 235243.CrossRefGoogle Scholar
Van Turnhout, (1980) Thermally Stimulated Discharge of Electrets in Electrets, Topics in Applied Physics vol. 33. Springer-Verlag, Berlin.Google Scholar
Vanderschueren, J. & Gasiot, J. (1979) Field Induced Thermally Stimulated Current. Topics in Applied Physics vol. 37, Springer-Verlag, Berlin.Google Scholar