Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T14:39:57.329Z Has data issue: false hasContentIssue false

The influence of pH on the synthesis of mixed Fe-Mn oxide minerals

Published online by Cambridge University Press:  09 July 2018

M. H. Ebinger
Affiliation:
Agronomy Department, Purdue University, West Lafayette, Indiana 47907, USA
D. G. Schulze
Affiliation:
Agronomy Department, Purdue University, West Lafayette, Indiana 47907, USA

Abstract

Mn-substituted iron oxides were synthesized at pH 4, 6, 8, and 10 from Fe-Mn systems with Mn mole fractions (Mn/(Mn + Fe)) of 0, 0·2, 0·4, 0·6, 0·8, and 1·0, and kept at 50°C for 40 days. The Mn mole fraction in goethite was <0·07 at pH 4 but increased to ∼0.47 at pH 6. Goethite and/or hematite formed in Fe and Fe + Mn syntheses at pH 4 and pH 6 at Mn mole fractions ≤0·8, and at Mn mole fractions ≤0·2 at pH 8 and pH 10. Hausmannite and jacobsite formed at pH 8 and pH 10 at Mn mole fractions ≥0·4. In the pure Mn syntheses, manganite (γ-MnOOH) formed at pH 4 and pH 6, whereas hausmannite (Mn3O4) formed at pH 8 and pH 10. As the Mn substitution increased, the unit-cell dimensions of goethite shifted toward those of groutite, and the mean crystallite dimensions of goethite decreased.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brady, K.S., Bigham, J.M., Haynes, W.F. & Logan, T.J. (1986) Influence of sulfate on Fe-oxide formation: Comparisons with a stream receiving acid mine drainage. Clays Clay Miner., 34, 266–274.CrossRefGoogle Scholar
Chao, T.T. & Theobald, P.K. (1976) The significance of iron and manganese oxides in geochemical exploration. Econ. Geol., 71, 1560–1569.Google Scholar
Cornell, R.M. & Giovanoli, R. (1987) Effect of manganese on the transformation of ferrihydrite into goethite and jacobsite in alkaline media. Clays Clay Miner., 35, 1120.CrossRefGoogle Scholar
Davies, S.H.R. (1985) Mn(II) oxidation in the presence of metal oxides. PhD thesis, California Inst. Tech., Pasadena, USA. University Microfilms International, #8519538.Google Scholar
Davies, S.H.R. (1986) Mn(II) oxidation in the presence of lepidocrocite: The influence of other ions. Pp. 487502 in: Geochemical Processes at Mineral Surfaces (J.A. Davis & K.F. Hays, editors). Am. Chem. Soc., Washington, DC.Google Scholar
Dousma, J., den Ottelander, D. & de Bruyn, P.L. (1979) The influence of sulfate ions on the formation of iron(III) oxides. J. Inorg. Nucl. Chem., 41, 1565–1568.CrossRefGoogle Scholar
Ebinger, M.H. & Schulze, D.G. (1989) Mn-substituted goethite and Fe-substituted groutite synthesized at acid pH. Clays Clay Miner., 37, 151–156.CrossRefGoogle Scholar
Grimme, H. (1968) Die Adsorption von Mn, Co, Cu, und Zn durch Goethit aus verdlinnten Losung. Z. Pflanzenernaehr. Bodenkd., 121, 58–65.Google Scholar
JCPDS (1980) Mineral Powder Diffraction File. International Centre for Diffraction Data, Swarthmore, Pennsylvania.Google Scholar
Karim, Z. (1984) Influence of transition metals on the formation of iron oxides during the oxidation of Fe(II)Cl2 solution. Clays Clay Miner., 32, 334–336.Google Scholar
Klug, H.P. & Alexander, L.E. (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials,, 2nd edition. John Wiley & Sons, New York.Google Scholar
Larson, A.C. & Von Dreele, R.B. (1987) Generalized Structure Analysis System. Los Alamos Nat. Lab. Rep., LAUR-86-748.Google Scholar
Lim-Nunez, R. & Gilkes, R.J. (1987) Acid dissolution of synthetic metal containing goethites and hematites. Proc. Int. Clay Conf. Denver,, 197204. Google Scholar
McKenzie, R.M. (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust. J. Soil Res., 18, 61–73.Google Scholar
Matsusaka, Y. & Sherman, G.D. (1961) Magnetism of iron oxide in Hawaiian soils. Soil ScL, 91, 239–245.Google Scholar
Mulay, L.N. (1963) Analytical application of magnetic susceptibility. Pp. 1751-1884 in: Treatise on Analytical Chemistry, vol. 1, part 4 (I.M. Kolthoff & P.J. Elring, editors). Wiley, New York.Google Scholar
Nagata, T. (1961) Rock Magnetism. Maruzen Co. Ltd., Tokyo.Google Scholar
Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst., 2, 65–71. Schulze, D.G. (1984) The influence of aluminum on iron oxides. VIII. Unit-cell dimensions of Al-substituted goethite and estimation of A1 from them. Clays Clay Miner., 32, 36–44.Google Scholar
Schulze, D.G. & Schwertmann, U. (1984) The influence of aluminium on iron oxide: X. Properties of Al-substituted goethites. Clay Miner., 19, 521–539.CrossRefGoogle Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Losung. Z. Pflanzenernaehr. Bodenkd., 105, 194–202.Google Scholar
Schwertmann, U., Gasser, U. & Sticher, H. (1989) Chromium-for-iron substitution in synthetic goethite. Cosmochim. Acta, 53, 1293–1297.CrossRefGoogle Scholar
Schwertmann, U. & Murad, E. (1983) The effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner., 31, 277–284.CrossRefGoogle Scholar
Stiers, W. & Schwertmann, U. (1985) Evidence for manganese substitution in synthetic goethite. Geochim. Cosmochim. Acta, 49, 1909–1911.CrossRefGoogle Scholar
Torrent, J. & Guzman, R. (1982) Crystallization of Fe(III) oxides from ferrihydrite in salt solutions. Osmotic and specific ion effect. Clay Miner., 17, 463469.Google Scholar