Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T09:18:54.190Z Has data issue: false hasContentIssue false

Elucidating the crystal-chemistry of Jbel Rhassoul stevensite (Morocco) by advanced analytical techniques

Published online by Cambridge University Press:  09 July 2018

B. Rhouta*
Affiliation:
Laboratoire de Matière Condensée et Nanostructures (LMCN), Faculté des Sciences et Techniques Guéliz, BP 549, Marrakech, Morocco
H. Kaddami
Affiliation:
Laboratoire de Chimie Bioorganique et Macromoléculaire, Faculté des Sciences et Techniques Guéliz, BP 549, Marrakech, Morocco
J. Elbarqy
Affiliation:
Laboratoire de Matière Condensée et Nanostructures (LMCN), Faculté des Sciences et Techniques Guéliz, BP 549, Marrakech, Morocco Laboratoire de Chimie Bioorganique et Macromoléculaire, Faculté des Sciences et Techniques Guéliz, BP 549, Marrakech, Morocco
M. Amjoud
Affiliation:
Laboratoire de Matière Condensée et Nanostructures (LMCN), Faculté des Sciences et Techniques Guéliz, BP 549, Marrakech, Morocco
L. Daoudi
Affiliation:
Laboratoire de Géosciences et Géoenvironnement, Faculté des Sciences et Techniques Guéliz, BP 549, Marrakech, Morocco
F. Maury
Affiliation:
CIRIMAT; UMR 5085 CNRS-UPS-INP, ENSIACET, 118 Route de Narbonne, 31077 Toulouse, France
F. Senocq
Affiliation:
CIRIMAT; UMR 5085 CNRS-UPS-INP, ENSIACET, 118 Route de Narbonne, 31077 Toulouse, France
A. Maazouz
Affiliation:
LMM-INSA-Lyon, 20 Av A Albert Einstein, 69621 Villeurbanne, France
J.- F. Gerard
Affiliation:
LMM-INSA-Lyon, 20 Av A Albert Einstein, 69621 Villeurbanne, France

Abstract

The composition of Rhassoul clay is controversial regarding the nature of the pure-mineral clay fraction which is claimed to be stevensite rather than saponite. In this study, the raw and mineral fractions were characterized using various techniques including Fourier transform infrared spectroscopy and magic angle spinning nuclear magnetic resonance (MAS NMR). The isolated fine clay mineral fraction contained a larger amount of Al (>1 wt.%) than that reported for other stevensite occurrences. The 27Al MAS NMR technique confirmed that the mineral is stevensite in which the Al is equally split between the tetrahedral and octahedral coordination sites. The 29Si NMR spectrum showed a single unresolved resonance indicating little or no short-range ordering of silicon. The chemical composition of the stevensite from Jbel Rhassoul was determined to be ((Na0.25K0.20)(Mg5.04Al0.37Fe0.200.21)5.61(Si7.76Al0.24)8O20(OH)4). This formula differs from previous compositions described from this locality and shows it to be an Al-bearing lacustrine clay mineral.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ais, M. (1984) Etude géologique du gisement de Rhassoul de Tamdafelt (bassin de Missour). MSc thesis, Université Sidi Mohamed Ben Abdelah, Fes, Morocco, 31 p.Google Scholar
Barrakad, A. (1981) Mines et Energie, Rabat, Morocco. 49, 138142.Google Scholar
Benammi, M. & Jeager, J.J. (1995) Datation des formations continentales du Jbel Rhassoul à l'aide des micro-mammiferes. Notes et Mémoires, Société Marocaine de Géology du Maroc, 251 pp.Google Scholar
Benhammou, A. (2005) Valorisation de la stevensite du Jbel Rhassoul: Application à l'adsorption des métaux lourds. PhD thesis, Cadi Ayyad University, Marrakesh, Morocco, 131 p.Google Scholar
Benhammou, A., Yaacoubi, A., Nibou, L. & Tanouti, B. (2005a) Study of the removal of mercury(II) and chromium(VI) from aqueous solutions by Moroccan stevensite. Journal of Hazardous Materials, B117, 243249.Google Scholar
Benhammou, A., Yaacoubi, A., Nibou, L. & Tanouti, B. (2005b) Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies. Journal of Colloid and Interface Science, 282, 320326.Google Scholar
Benhammou, A., Yaacoubi, A., Nibou, L. & Tanouti, B. (2007) Chromium (VI) adsorption from aqueous solution onto Moroccan Al-pillared and cationic surfactant stevensite. Journal of Hazardous Materials, 140, 104109.Google Scholar
Bergaya, F. & Vayer, M. (1997) CEC of clays: Measurement by adsorption of a copper ethylenediamine complex. Applied Clay Science, 12, 275280.Google Scholar
Briant, J. (1989) Les phénomènes électriques aux interfaces. Pp. 153207 in: Ohénomènes d'interface. Agents de surface. Principes et modes d'action. Editions Technip, Paris et l'Institut Français du Petrole, Rueil Malmaison, 340 p.Google Scholar
Brindley, G.W. & Brown, G. (1980) Crystal Structure of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London, 495 pp.Google Scholar
Caillère, S. & Henn, S. (1956) Un problème de nomenclature: les montmorillonies magnésiennes (saponite-aphrodite-rhassoulite-stévensite). Bulletin du Groupe Français d'Argiles, 8, 3740.Google Scholar
Caillère, S., Henin, S. & Rautureau, M. (1982) Minéralogie des argiles: 1. structures et propriétés physico-chimiques. 2. Classification et nomenclatures. Masson, Paris, 184 pp.Google Scholar
Capet, X. (1990) Paléoenvironnement et diagenèse argileuse dans le domaine Caraïbe au Cénozoïque. PhD thesis, University Sciences et Techniques de Lille Flandres-Artois, France, 206 p.Google Scholar
Chahi, A. (1992) Comparaison des minéraux argileux des formations lacustres du Jbel Rhassoul et des phosphorites marines des Gantours au Maroc. PhD thesis, University Louis Pasteur, Strasbourg, France, 211 p.Google Scholar
Chahi, A. (1996) Les minéraux argileux des gisements de phosphorites des Ganntour et de stevensite du Jbel Rhassoul (Maroc). PhD thesis, Cadi Ayyad University, Marrakesh, Morocco, 166 p.Google Scholar
Chahi, A., Duplay, J. & Lucas, J. (1993) Analyses of palygorskite and associated clays from the Jbel Rhassoul (Morocco): chemical characteristics and origin of formation. Clays and Clay Minerals, 41, 401411.Google Scholar
Chahi, A., Fritz, B., Duplay J. Weber, F. & Lucas, J. (1997) Textural transition and genetic relationship between precursor stevensite and sepiolite in lacustrine sediments (Jbel Rhassoul, Morocco). Clays and Clay Minerals, 45, 378389.Google Scholar
Chahi, A., Duringer, P., Ais, M., Bouabdelli, M., Gauthier-Lafaye, F. & Fritz, B. (1999) Diagenetic transformation of dolomite into stevensite in lacustrine sediments from Jbel Rhassoul, Morocco. Journal of Sedimentary Research, 69, 11231135.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer, Berlin, 623 p.Google Scholar
Dammour, A.A. (1843) Annales de Physique Chimie. 8, 316 pp.Google Scholar
Daoudi, L. (1996) Contrôles diagénnétique et paléogéographique des argiles des sédiments mésozoïques du Maroc; Comparaison avec les domaines atlantiques et téthysien. PhD thesis, University Cadi Ayyad, Marrakech, Morocco.Google Scholar
Daoudi, L. (2004) Palygorskite in the uppermost Cretaceous-Eocene rocks from Marrakech High Atlas, Morocco. Journal of African Earth Sciences, 39, 353358.Google Scholar
Duringer, P., Ais, M. & Chahi, A. (1995) Contexte géodynamique et milieu de dépôt du gisement de stévensite (Rhassoul) miocéne du Maroc: environnement lacustre ou évaporitique. Societe Geologique de France Bulletin, 166, 169179.Google Scholar
Eberhart, J.-P. (1989) Analyse structurale et chimique des matériaux. Bordas, Paris, 614 pp.Google Scholar
Faust, G.T., Hathaway, J.C. & Millot, G. (1959) A restudy of stevensite and allied minerals. American Mineralogist, 44, 342370.Google Scholar
Fleischer, M. (1955) New mineral names. American Mineralogist, 40, 137.Google Scholar
Fripiat, J., Cases, J., François, M. & Letellier, M. (1982) Thermodynamic and microdynamic behaviour of water in clay suspensions and gels. Journal of Colloid and Interface Science, 89, 378400.Google Scholar
Guven, N. (1988) Smectites. Pp. 497559 in: Hydrous Phyllosilicates (exclusive of micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C. Google Scholar
Holtzapffel, T. (1985) Les minéraux argileux: préparation, analyse diffractométrique et détermination. Société Géologique du nord, 12, 1543.Google Scholar
Jacobs, K.Y., Soers, J. & Schoonheydt, R.A. (1996) The synthesis of hectorite: A template effect. Pp. 451464 in: Synthesis of Porous Materials — Zeolites: Clays and Nanostructures (Occelli, M.L., Kessler, H. & Dekker, M., editors).Google Scholar
Jeannette, A. (1952) Argiles smectites et rhassoul. Service Géologique, Maroc Notes et Memoires, 87, 371383.Google Scholar
Jolivet, J.P. (1994) De la solution à l'oxyde: Condensation des cations en solution aqueuse, chimie de surface des oxides. International editions/CNRS edition, Paris, 387 pp.Google Scholar
Keller, W.D. (1985) The nascence of clay minerals. Clays and Clay Minerals, 33, 161172.CrossRefGoogle Scholar
Komarneni, S., Fyfe, C.A., Kennedy, C.J. & Strobl, H. (1986) Characterization of synthetic and naturally occurring clays by 27Al and 29Si magic-angle spinning NMR spectroscopy. Journal of the American Ceramics Society, 69, 4547.Google Scholar
Mackenzie, R.C. (1972) Differential Thermal Analysis. Vol 1 & 2. Academic Press, London and New York, 456 pp.Google Scholar
Mermut, A.R. & Lagaly, G. (2001) Baseline studies of the clay minerals society source clays: layer-charge determination and characteristics of those minerals containing 2:1 layers. Clays and Clay Minerals, 49, 393397.Google Scholar
Millot, G. (1954) La Ghassoulite, pôle magnésien de la série des montmorillonites. Académie des Sciences (Paris), Comptes Rendus, 238, 257259.Google Scholar
Parthasarathy, G., Choudary, B.M., Sreedhar, B., Kunwar, A.C. & Srinivasan, R. (2003) Ferrous saponite from the Deccan Trap, India, and its application in adsorption and reduction of hexavalent chromium. American Mineralogist, 88, 19831988.Google Scholar
Pletsch, T., Daoudi, L., Chamley, H., Deconinck, I.F. & Charroud, M. (1996) Palaeogeographic controls on palygorskite occurence in mid-Cretaceous sediments of Morocco and adjacent basins. Clay Minerals, 31, 403416.Google Scholar
Rautureau, M., Caillère, S. & Hénin, S. (2004) Les argiles, Seconde édition — Éditions Septima. Paris, 98 p.Google Scholar
Reinholdt, M. (2001) Synthèse en milieu fluoré et caractérisation de phyllosilicates de type Montmorillonite. Etude structurale par spectroscopie d'Absorption des rayons X et de résonance Magnétique Nucleaire. PhD thesis, Université de haute Alsace, Mulhouse, France, 243 pp.Google Scholar
Russell, J.D. & Fraser, A.R. (1994) Infrared methods. Pp. 1167 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M.J., editor). Chapman and Hall, London.CrossRefGoogle Scholar
Singhal, R.G. (2003) Transport properties of hectorite based nanocomposite single-ion conductors. MSc thesis, North Carolina State University, Raleigh, USA, 108 pp.Google Scholar
Trauth, N. (1977) Argiles évaporitiques dans la sédimentation earbonatée continentale et épicontinentale tertiaire. Bassins de Paris, de Mormoiron et de Salinelles (France) et du Jbel Ghassoul (Maroc). Sciences Géologiques, Mémoires, 49, 195.Google Scholar
Velde, B. (1995) Origin and Mineralogy of Clays: Clays and the Environment. Springer-Verlag, Berlin, Heideberg, New York, 334 pp.Google Scholar
Wilson, M.D. & Pittman, E.D. (1977) Authigenic clays in sandstones: Recognition and influence of reservoir properties and paleoenvironmental analysis. Journal of Sedimentary Petrology, 47, 331.Google Scholar