Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-08T01:24:21.455Z Has data issue: false hasContentIssue false

Decarboxylation catalytique de l'acide oxaloacetique en presence de montmorillonite

Published online by Cambridge University Press:  09 July 2018

B. Siffert
Affiliation:
Centre de Recherches sur la Physico-Chimie des Surfaces Solides — CNRS, 24, avenue du Président Kennedy, 68200 Mulhouse, France
A. Naidja
Affiliation:
Centre de Recherches sur la Physico-Chimie des Surfaces Solides — CNRS, 24, avenue du Président Kennedy, 68200 Mulhouse, France

Resume

La décarboxylation de l'acide oxaloacétique en acide pyruvique a été étudiée en présence de montmorillonite saturée en cations différents et des mêmes cations à l'état libre (non incorporés). L'action catalytique dépend de la nature du cation, cést-à-dire de sa facilité à former des complexes avec l'acide oxaloacétique. Le réseau argileux intervient dans la catalyse essentiellement par les atomes d'aluminium (ou de fer) situés sur les bords des feuillets argileux. Il joue le rôle d'un métalloenzyme biologique. Le calcul des énergies d'activation pour les différents systèmes met bien en évidence l'activité catalytique de l'argile. En présence du phyllosilicate, la réaction a lieu avec un bon rendement jusqu'à une température de 60°C.

Abstract

Abstract

Oxaloacetic acid decarboxylation into pyruvic acid and carbon dioxide was studied in the presence of montmorillonite saturated with different cations, and in the presence of the same cations in their free state (non-incorporated). The catalytic effect is a function of the nature of the cation, i.e. its ability to form chelate complexes with oxaloacetic acid. The clay mineral structure plays an important role in the decomposition of the oxalo-acetic acid molecule, the aluminium atoms at the edges of the crystals being the active sites. Thus the clay mineral acts as a metalloenzyme. Activation energy computations for the different systems illustrate the influence of the clay structure in this catalytic process. In the presence of montmorillonite, the reaction yield was high up to 60°C.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Boyd, S.A. & Mortland, M.M. (1985) Manipulating the activity of immobilized enzymes with different organo-smectite complexes. Experientia 12, 15641566.Google Scholar
Boyd, S.A. & Mortland, M.M. (1986) Selective effects of smectite-organic complexes on the activities of immobilized enzymes. J. Mol. Cat. 34, 18 .CrossRefGoogle Scholar
Brack, A. (1976) Polymérisation en phase aqueuse d'acides aminés sur des argiles. Clay Miner. 11, 117120.Google Scholar
Degens, E.T., Matheja, J. & Jackson, T.A. (1970) Template catalysis: asymetric polymerisation of aminoacids on clay minerals. Nature 227, 492493.Google Scholar
Gelles, E. & Hay, R.W. (1958) The interaction of transition-metal ions with oxaloacetic acid. Part I. The chelate compounds in the decarboxylation. J. Chem. Soc. 3, 36733683.Google Scholar
Gelles, E. & Salama, A. (1958) The interaction of transition-metal ions with oxaloacetic acid. Part II. Thermodynamics of chelation. J. Chem. Soc. 3, 36833685.Google Scholar
Gelles, E. & Salama, A. (1958) The interaction of transition-metal ions with oxaloacetic acid. Part III. Kinetics of the catalysed decarboxylation. J. Chem. Soc. 3, 36883693.Google Scholar
Harrow, B. & Mazur, A. (1966) Text Book of Biochemistry. pp. 116121, 9th edition. Saunder Co, Philadelphia.Google Scholar
Kessaissia, S., Siffert, B. & Donnet, J.B. (1980) Synthèse des peptides. Préparation de l'acide hyppurique par réaction du complexe montmorillonite-glycine avec l'acide benzoïque. Clay Miner. 15, 383392.Google Scholar
McLaren, A.D. (1954) The adsorption and reactions of enzymes and proteins on kaolinite. J. Phys. Chem. 58, 129137.Google Scholar
McLaren, A.D., Peterson, G.H. & Barshad, I. (1958) The adsorption and reaction of enzymes and proteins on clay minerals IV. kaolinite and montmorillonite. Soil Sci. Soc. Am. Proc. 22, 239244.Google Scholar
McLaren, A.D. & Peterson, G.H. (1961) Montmorillonite as a caliper for the size of protein molecules. Nature 192,960961.Google Scholar
Morgan, H.W. & Corke, C.T. (1976) Adsorption, dcsorption, and activity of glucose oxidase on selected species. Can. J. Microbiol. 22, 684693.Google Scholar
Morgan, H.W. & Corke, C.T. (1977) Release of flavine adenine dinucleotide on adsorption of the enzyme glucose oxidase to clays. Can. J. Microbiol. 23, 11101117.Google Scholar
Mortland, M.M. (1984) Deamination of glutamic acid by pyridoxal phosphate-Cu-smectite, Catalysts. J. Mol. Cat. 27, 143155.Google Scholar
Paecht-Horowitz, M. (1974) The possible role of clays in prebiotic peptides synthesis. Origins of Life 5, 173 187.Google Scholar
Pinnavaia, T.J. & Mortland, M.M. (1971) Complexes of montmorillonite. J. Phys. Chem. 75, 3957.Google Scholar
Rishpon, J., O'Hara, P. J., Lahav, N. & Lawless, J.G. (1982) Interaction between ATP, Metal ions, glycine and several minerals. J. Mol. Evol. 18, 179184.Google Scholar
Stul, M.S. & Vanleemput, L. (1982) Particle size distribution, cation exchange capacity and charge density of deferated montmorillonite. Clay Miner. 17, 209215.Google Scholar
Thompson, T.D. & Tsunashina, A. (1973) The alteration of some aromatic amino-acids and polyhydric phenols by clay minerals. Clays Clay Miner. 21, 351361.CrossRefGoogle Scholar
Theng, B.K.G. (1974) The Chemistry of Clay Organic Reactions, pp. 7484. Adam Hilger, London.Google Scholar
Weil, J.H. (1975) Biochimie Générale, pp. 187288. Masson, 2e édition, Paris.Google Scholar
William, J., Tilak, D., Tennakoon, B., Thomas, J.M., Williamson, L.J., Ballatine, J.A. & Purnell, J.H. (1983) The principles of chemical conversion of organic molecules using sheet silicates. Proc. Indian Acad. Sci. (Chem. Sci.) 92, 2741.Google Scholar
Zvyagintsev, G.D. & Velikanov, L.L. (1968) Influence of soils and clay minerals on the activity of glucose oxidase and invertase. Soy. Soil Sci. 789794.Google Scholar