Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T00:30:13.920Z Has data issue: false hasContentIssue false

The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches

Published online by Cambridge University Press:  09 July 2018

A. Gaudin*
Affiliation:
UMR CNRS 6112, Laboratoire de Planétologie et Géodynamique, Faculté des Sciences et Techniques, Université de Nantes, BP-92208, 44322, Nantes Cedex 03 CEREGE, UMR CNRS 6635 Université Aix-Marseille III, Europôle Méditerranéen de l'Arbois, BP 80 F-13545 Aix-en-Provence Cedex 04
S. Petit
Affiliation:
UMR CNRS 6532, HydrASA, Université de Poitiers, 40, avenue du Recteur Pineau, 86022 Poitiers Cedex
J. Rose
Affiliation:
CEREGE, UMR CNRS 6635 Université Aix-Marseille III, Europôle Méditerranéen de l'Arbois, BP 80 F-13545 Aix-en-Provence Cedex 04
F. Martin
Affiliation:
L.A.S.E.H., Faculté des Sciences et Techniques, Université de Limoges, 87060 Limoges Cedex, France
A. Decarreau
Affiliation:
UMR CNRS 6532, HydrASA, Université de Poitiers, 40, avenue du Recteur Pineau, 86022 Poitiers Cedex
Y. Noack
Affiliation:
CEREGE, UMR CNRS 6635 Université Aix-Marseille III, Europôle Méditerranéen de l'Arbois, BP 80 F-13545 Aix-en-Provence Cedex 04
D. Borschneck
Affiliation:
CEREGE, UMR CNRS 6635 Université Aix-Marseille III, Europôle Méditerranéen de l'Arbois, BP 80 F-13545 Aix-en-Provence Cedex 04
*

Abstract

Fe-rich smectites from lateritic weathering profiles have previously been studied by XRD, ICP-AES, SEM-EDX and TEM-EDX analyses (Gaudin et al., 2004). These smectites exhibit intermediate chemistries between five end-members: Al-Fe beidellites, Al-Fe montmorillonites and Mg+Ni-saponite. The spectroscopic study by FTIR and XAS of these smectites reveals that: (1) tetrahedral Fe3+ is near or below the detection limit (0.05 cation for 4Si); (2) the large chemical variability is due to substitution of the three major cations (Fe, Al, Mg) within adjacent octahedra; (3) Ni is not concentrated in another clay phase such as Ni-kerolite and is located in the octahedral sheets of smectite; (4) octahedral cations are not randomly distributed but ordered in separated Fe, Al, Mg, Ni clusters; (5) the Mg-Ni saponite end-member actually appears as small trioctahedral clusters of Mg and Ni distributed within the dioctahedral smectite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Besson, G. & Drits, V.A. (1997a) Refined relationships between chemical composition of dioctahedral finegrained mica minerals and their infrared spectra within the OH-stretching region. Part I: Identification of the OH-stretching bands. Clays and Clay Minerals, 45, 158–169.Google Scholar
Besson, G. & Drits, V.A. (1997b) Refined relationships between chemical composition of dioctahedral finegrained mica minerals and their infrared spectra within the OH-streching region. Part II: The main factors affecting OH vibrations and quantitative analysis. Clays and Clay Minerals, 45, 170–183.Google Scholar
Besson, G., Bookin, A.S., Dainyak, L.G., Rautureau, M., Tsipursky, S.I., Tchoubar, C. & Drits, C.A. (1983) Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronites. Journal of Applied Crystallography, 16, 374–383.Google Scholar
Besson, G., Drits, V.A., Dainyak, L.G. & Smoliar, B.B. (1987) Analysis of cation distribution in dioctahedral micaceous minerals on the basis of IR spectroscopy data. Clay Minerals, 22, 55–64.Google Scholar
Bishop, L., Madejová, J., Komadel, P. & Fröschl, H. (2002a) The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Minerals, 37, 607–616.Google Scholar
Bishop, J., Murad, E. & Dyar, M.D. (2002b) The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy. Clay Minerals, 37, 617–628.Google Scholar
Bonnin, D., Callas, G., Suquet, H. & Pezerat, H. (1985) Intracrystalline distribution of Fe3+ in Garfield nontronite, a spectroscopic study. Physics and Chemistry of Minerals, 12, 55–64.Google Scholar
Camuti, K.S. & Gifford, M.G. (1997) Mineralogy of the Murrin Murrin nickel laterite deposit, Western Australia. Pp. 407—410 in: Mineral Deposits (Papunan, H., editor). Balkema, A.A., Rotterdam.Google Scholar
Decarreau, A., Colin, F., Herbillon, A., Manceau, A., Nahon, D., Paquet, H., Trauth-Badaut, D. & Trescases, J.J. (1987) Domain segregation in Ni-Fe-Mg-smectites. Clays and Clay Minerals 35, 1-10.Google Scholar
Decarreau, A., Grauby, O. & Petit, S. (1992) The actual distribution of octahedral cations in 2:1 clay minerals: Results from clay synthesis. Applied Clay Science, 7, 147–167.CrossRefGoogle Scholar
Drits, V.A., Dainyak, L.G., Muller, F., Besson, G. & Manceau, A. (1997) Isomorphous cation distribution in celadonites, glauconites and Fe-illites determined by infrared, Mössbauer and EXAFS spectroscopies. Clay Minerals, 32, 153–179.Google Scholar
Ducloux, J., Boukili, H., Decarreau, A., Petit, S., Perruchot, A. & Pradel, P. (1993) Un gîte hydrothermal de garniérites: Pexemple de Bou Azzer, Maroc. European Journal of Mineralogy, 5, 1205–1215. Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331-365 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, Mineralogical Society, London.Google Scholar
Farmer, V.C. & Russell, J.D. (1964) The I.R. spectra of layer silicates. Spectrochimica Ada, 20, 1149–1173.Google Scholar
Gates, W.P., Slade, P.G., Manceau, A. & Lanson, B. (2002) Site occupancies by iron in nontronites. Clays and Clay Minerals, 50, 223–239.CrossRefGoogle Scholar
Gaudin, A., Grauby, O., Noack, Y., Decarreau, A. & Petit, S. (2004) The actual crystal chemistry of ferric smectites from the lateritic nickel ore of Murin Murin (Western Australia). I. XRD and multi-scale chemical approaches. Clay Minerals, 39, 301–315.Google Scholar
Goodman, B.A., Russell, J.D., Fraser, A.D. & Woodhams, F.W.D. (1976) A Mossbauer and IR spectroscopic study of the structure of nontronite. Clays and Clay Minerals, 24, 53–59.Google Scholar
Grauby, O., Petit, S., Decarreau, A. & Baronnet, A. (1994) The nontronite-saponite series: an experimental approach. European Journal of Mineralogy, 5, 623–635.Google Scholar
Köster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E. & Onnich, K. (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites. Clay Minerals, 34, 579–599.Google Scholar
Madejová, J., Komadel, P. & Čičel, B. (1994) Infrared study of octahedral site populations in smectites. Clay Minerals, 29, 319–326.Google Scholar
Manceau, A. (1990) Distribution of cations among the octahedra of phyllosilicates: insight from EXAFS. The Canadian Mineralogist, 28, 321–328.Google Scholar
Manceau, A. & Calas, G. (1985) Heterogeneous distribution of nickel in hydrous silicates from New Caledonia ore deposits. American Mineralogist, 70, 549–558.Google Scholar
Manceau, A. & Calas, G. (1986) Nickel-bearing clay minerals: II. Intracrystalline distribution of nickel: an X-ray absorption study. Clay Minerals, 21, 341–360.Google Scholar
Manceau, A. & Combes, J.M. (1988) Structure of Mn and Fe oxides and oxyhydroxides: a topological approach by EXAFS. Physics and Chemistry of Minerals, 15, 283–295.Google Scholar
Manceau, A. & Gates, W.P. (1997) Surface structural model for ferrihydrite. Clays and Clay Minerals, 43, 448–460.Google Scholar
Manceau, A., Bonnin, D., Stone, W.E.E. & Sanz I (1990) Distribution of Fe in the octahedral sheet of trioctahedral micas by polarized EXAFS. Physics and Chemistry of Minerals, 17, 363–370.Google Scholar
Manceau, A., Lanson, B., Drits, V.A., Chateigner, D., Gates, W.P., Wu I, Huo, D. & Stucki, J.W. (2000) Oxidation-reduction of iron in dioctahedral smecites: I. Crystal chemistry of oxidized reference nontronites. American Mineralogist, 85, 133–152.Google Scholar
McKale, A.G., Veal, B.W., Paulolikas, A.P., Chan, S.K. & Knapp, G.S. (1988) Improved ah initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy. Journal of American Chemical Society, 110, 3763–3768.Google Scholar
Michalowicz, A. (1991) Logiciels pour la Chimie (Société Française de Chimie, editor). Paris, 102 pp.Google Scholar
Muller, F., Besson, G., Manceau, A. & Drits, V.A. (1997) Distribution of isomorphous cations within octahedral sheets in montmorillonite from Camp-Bertaux. Physics and Chemistry of Minerals, 24, 159–166.Google Scholar
Oinuma, K. & Hayashi, H. (1968) Infrared spectra of clay minerals. Journal of Tokyo University, General Education (Natural Sciences), 9, 57–98.Google Scholar
Petit, S., Prot, T., Decarreau, A., Mosser, C. & Toledo-Groke, M.C. (1992) Crystallochemical study of a population of particles in smectites from a lateritic weathering profile. Clays and Clay Minerals, 40, 436–445.Google Scholar
Petit, S., Caillaud L, Righi, D., Madejová, L., Elsass, F. & Köster, H.M. (2002) Characterization and crystal chemistry of an Fe-rich montmorillonite from Ölberg, Germany. Clay Minerals, 37, 283–297.Google Scholar
Russell, J.D. & Fraser, A.R. (1994) Infrared methods. Pp. 11—67 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M.J., editor), Chapman & Hall, London.Google Scholar
Russell, J.D., Farmer, V.C. & Velde, B. (1970) Replacement of OH by OD in layer silicates and identification of vibrations of these groups in infrared spectra. Mineralogical Magazine, 37, 869–879.CrossRefGoogle Scholar
Sakharov, B.A., Besson, G., Drits, V.A., Kameneva, M.Y., Salyn, A.L. & Smoliar, B.B. (1990) X-ray study of the nature of stacking faults in the structure of glauconites. Clay Minerals, 25, 419–436.Google Scholar
Slonimskaya, M., Besson, G., Dainyak, L.G., Tchoubar, C. & Drits, V.A. (1986) Interpretation of the IR spectra of celadonites and glauconites in the OH-streching frequencies. Clay Minerals, 21, 377–388.CrossRefGoogle Scholar
Tsipursky, S.I. & Drits, V.A. (1984) The distribution of cations in the 2:1 layers of dioctahedral smectites studied by oblique texture electron diffraction. Clay Minerals, 19, 177–193.Google Scholar
Tsipursky, S.S., Drits, V.A. & Checkin, S.S. (1978) Study of structural ordering of nontronite by oblique texture electron diffraction. Investiya Akademie Nauk. SSSR, Seriya Geologicheskaya, 10, 105–113.Google Scholar
Tsipursky, S.I., Drits, V.A. & Plancon, A. (1985) Calculation of the intensities distribution in oblique texture electron diffraction patterns. Kristallografiya, 30, 38–44.Google Scholar
Vantelon, D., Pelletier, M., Michot, L.J., Barres, O. & Thomas, F. (2001) Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region. Clay Minerals, 36, 369–379.Google Scholar
Wilkins, R.W.T. & Ito, J. (1967) Infrared spectra of some synthetic talcs. American Mineralogist, 52, 1649–1661.Google Scholar