Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T03:48:08.140Z Has data issue: false hasContentIssue false

Spongolite: a hollow fibrous mineral from Mato Grosso do Sul State, Brazil

Published online by Cambridge University Press:  09 July 2018

F. J . Dos Santos
Affiliation:
Department of Chemistry, Federal University of Mato Grosso do Sul (UFMS), Cidade Universitá ria s/n CEP 79070-900, Campo Grande (MS)Brazil
O. Salgado Siqueira
Affiliation:
Department of Chemistry, Federal University of Mato Grosso do Sul (UFMS), Cidade Universitá ria s/n CEP 79070-900, Campo Grande (MS)Brazil
A. A. S. T. Delben
Affiliation:
Department of Physics, Federal Universityof Mato Grosso do Sul (UFMS), Cidade Universitária s/n CEP 79070-900, Campo Grande (MS)Brazil
J . R. Jurkevicz Delben
Affiliation:
Department of Physics, Federal Universityof Mato Grosso do Sul (UFMS), Cidade Universitária s/n CEP 79070-900, Campo Grande (MS)Brazil
P. Melnikov*
Affiliation:
Department of Physics, Federal Universityof Mato Grosso do Sul (UFMS), Cidade Universitária s/n CEP 79070-900, Campo Grande (MS)Brazil
*

Abstract

Spongolite from the State of Mato Grosso do Sul, Brazil, contains the remains of fossil sponges and hollow needles or microcapillaries with uniform surfaces. The central tunnels are ∼1/10 to 1/2 of the cylinder's diameter. The material is essentially X-ray amorphous though it contains small amounts of orthosilicic acids. The other main elements were Ti and Fe. Spongolite may have uses as a sorbent, as a bioavailable silicon source or, after blending with glass waste, it can be used in the fabrication of lightweight products having a closed-cell structure, potentially useful as an industrial insulator.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, T. (1996) Advanced glasses and glass ceramic materials. Processing, new developments, application and marketing. Report BBC Inc., Norwalk, Connecticut, USA.Google Scholar
Araújo Da Matta Machado, E. (2000) Characterização mineralógica de espongiolito da região de João Pinheiro. MSc thesis, UFMG, Belo Horizonte, MG, Brazil.Google Scholar
Auadi, A., Palou, T.M. & Kovar, V. (1997) Preparation of foam glass from glass waste, P. 112 in: Proceedings of the 14th Conference on Thermal Analysis, Belousske Slatini, Bratislava.Google Scholar
Calomme, M.R. (1998) Absorbtion of silicon in healthy subjects. Pp. 228243 in: Metal Ions in Biology and Medicine (Collery, P., editor). John Libbey, Paris.Google Scholar
Eslinger, J.M. (1980) Verre cellulaire a base de verre de recuperation: fabrication et proprietés chimiques. PhD thèse, UniversitéLouis Pasteur, Strasbourg, France.Google Scholar
Godeke, H. & Fichs, H.V. (1998) Sintered open-pore glass as a high strength sound absorber. Glastechnische Berichte Glass Science and Technology, 71, 282284.Google Scholar
Gruettner, C. & Teller, J. (1998) New types of silicafortified magnetic manoparticles as tools for molecular biology applications. Pp. 13 in: Proceedings of the Second International Conference on the Scientific and Clinical Applications of magnetic carriers, Cleveland, Ohio, USA, 1998.Google Scholar
Jugdaohsingh, R. (2000) Oligomeric but not monomeric silica prevents aluminium absorption in humans. American Journal of Clinical Nutrition, 71, 944948.CrossRefGoogle Scholar
Kroger, N., Deutzmann, R. & Sumper, M. (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science, 286, 11291132.Google Scholar
Motta, J.F.M., Jr.Cabral, M., & Alves Campanha, V. (1986) Diatomitos e espongiolitos no estado de São Paulo. Pp. 23292330 in: Anais do XXXIV Congresso Brasileiro de Geologia, Goiânia, Goiás, Brazil.Google Scholar
Petri, S. & Fúlfaro, V.J. (1983) Geologia do Brasil. Editora da Universidade de São Paulo, Brazil.Google Scholar
Reffitt, D.M., Jugdaohsingh, R. & Thompson, R.P.H. (1999) Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. Journal of Inorganic Biochemistry, 76, 141147.Google Scholar
Rosenberg, D.M. (2000) Silica exposure and silicosis. American Ceramic Society Bulletin, 79, 6063.Google Scholar
Saakian, E.R. (1991) Cellular glasses from diatomites. Steklo i Ceramica, 3, 34.Google Scholar
Schukin, E.D., Pertsov, A.V. & Amelina, E.A. (1988) Pp. 191225 in: Química Coloidal. Mir, Moscow (in Spanish).Google Scholar
Silva Maia, F., Alves Teixeira, M., Rodrigues Coimbra, P., dos Santos, F.J., Melnikov, P. & Salgado Siqueira, O. (2000) Synthesis and characterisation of materials obtained from spongillite, Pp. 133134 in: X Brazilian Meet ing on Inorga nic Chemistry, Florianopolis, S.C., Brazil.Google Scholar
Volkmer-Ribeiro, C. & Motta, J.F. (1995) Esponjas formadoras de espong iolitos em lagoas no Triângulo Mineiro e adjacências, com indicação de preservação de habitat. Biociências, Porto Alegre, 3, 145169.Google Scholar
Volkmer-Ribeiro, C., Motta, J.F. & Callegaro, L.M. (1998) Taxonomy and distribution of Brazilian spongillites. Pp. 272278 in: Sponge Sciences – Multidisciplinary Perspectives (Watanabe, Y. & Fusetani, N., editors). Springer-Verlag, Tokyo.Google Scholar
Zhao, D., Yang, P., Huo, P., Chmelka, B.F. & Stucky, G.D. (1998) Topological construction of mesoporous materials. Current Opinion in Solid State and Materials Science, 3, 111121.Google Scholar