Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T13:07:05.430Z Has data issue: false hasContentIssue false

Non-marine glauconitic illite in the Lower Oligocene of Aardebrug, Belgium

Published online by Cambridge University Press:  09 July 2018

D. H. Porrenga*
Affiliation:
Koninklijke/Shell Explortie en Produktie Laboratorium, Rijswijk, The Netherlands

Abstract

Thin green clay layers and lenses in the lower part of the Lower Oligocene Kerkom Sand near Aardebrug, east of Louvain in Belgium, were found to consist of glauconitic illite. This mineral contains about equal amounts of iron and aluminium oxides (14%) and is therefore intermediate in chemical composition between most illites and glauconites.

Comparison with the results of five published investigations of similar green clays in France and the United States shows that the green clays, which all have an intermediate glauconite-illite composition, are formed, unlike pelletoidal glauconite, in a non-marine environment. It is assumed that they developed in a lagoonal or hypersaline-lacustrine environment, probably as a result of the alteration of detrital illite-montmorillonite clay.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bentor, Y.K. & Kastner, M. (1965) Notes on the mineralogy and origin of glauconite, J. sedim. Petrol. 35, 155.Google Scholar
Brindley, G.W. (1966) Discussions and recommendations concerning the nomenclature of clay minerals and related phyllosilicates, Clays Clay Miner. 14, 27.Google Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1962) Rock-Forming Minerals, Vol. III. Sheet Silicates.Longmans, London.Google Scholar
Gabis, V. (1963) Etude minéralogique et géochimique de la série sédimentaire oligocène du Velay, Bull. Soc. fanqç. Minér. Crist. 86, 315.Google Scholar
Gaudette, H.E., Eades, J.L. & Grim, R.E. (1965) The nature of illite, Clays Clay Miner. 13. 33.CrossRefGoogle Scholar
Glibert, M. & De Heinzelin De Braucourt, J. (1954) J. Oligocéne Infèrieure Beige. Vol. Jubilaire Victor van Straelen, Brussels.Google Scholar
Hutton, C.O. & Seelye, F.T. (1941) Composition and properties of some New Zealand glau-conites, Am. Miner. 26, 595.Google Scholar
Jung, J. (1954) Les illites du bassin oligocéne de Satins (Cantal), Bull. Soc. franç. Minér. Crist. 77, 1231.Google Scholar
Keller, W.D. (1958) Glauconitic mica in the Morrison formation in Colorado, Clays Clay Miner. 5, 120.CrossRefGoogle Scholar
Nicholls, G.D. (1960) Techniques in sedimentary geochemistry: (2) determination of the ferrous iron content of carbonaceous shales, J. sedim. Petrol, 30, 603.CrossRefGoogle Scholar
Nicolas, J. (1962) Sur la prèsence de ‘glauconie’ en Bretagne Centrale. Genèse et Synthèse des Argiles, pp. 197206. Coll. Intern. C.N.R.S., 105, Paris.Google Scholar
Parry, W.T. & Reeves, Jr.C.C. (1966) Lacustrine glauconitic mica from Pluvial Lake Mound, Lynn and Terry Counties, Texas, Am. Miner. 51, 229.Google Scholar
Porrenga, D.H. (1967) Clay mineralogy and geochemistry of Recent marine sediments in tropical areas. Thesis, University of Amsterdam.Google Scholar
Smulikowski, K. (1954) The problem of glauconite, Archwm Miner. 18, 21.Google Scholar