Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T15:51:03.661Z Has data issue: false hasContentIssue false

Non-crystalline hydrous feldspathoids in Late Permian carbonate rock

Published online by Cambridge University Press:  09 July 2018

C. Bender Koch*
Affiliation:
Laboratory of Applied Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract

The EDTA-insoluble residues from five samples (two from the oolitic shoal facies and three from the lagoonal facies) of the Late Permian Ca-2 unit (Zechstein) have been investigated by X-ray diffraction, infrared spectroscopy, and scanning and transmission electron microscopy with energy dispersive X-ray analysis (EDXA). The results show that spheres of non-crystalline hydrous feldspathoids (with Al/Si molar ratio between 1·5 and 2·2) dominate the residues of samples from the oolitic shoal facies. Samples from the lagoonal facies are dominated by crystalline material (muscovite and quartz), but two of the samples contain a small number of spheres. Analyses of these samples by selective area diffraction and EDXA revealed the presence of small amounts of non-crystalline hydrous feldspathoids with Al/Si molar ratio between 0·1 and 1·9.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baartmann, J.C. (1978) in Rasmussen, L.B. (1978) Geological aspects of the Danish North Sea Sector. Danmarks Geolgiske Unders0gelse. Series 111., 44, 85 pp.Google Scholar
Bodine, M.W. Jr. & Fernalld, T.H. (1973) EDTA dissolution of gypsum, anhydrite, and Ca-Mg carbonates. 7. Sed. Pet., 43, 1152–1156.Google Scholar
Braitsch, O. (1971) Salt Deposits. Their Origin and Composition. Springer-Verlag, Berlin, 297 pp.Google Scholar
Farmer, V.C., Smith, B.F.L. & Tait, J.M. (1977) Alteration of allophane and imogolite by alkaline digestion. Clay Miner,, 12, 195–197.Google Scholar
Farmer, V.C., Fraser, A.R. & Tait, J.M. (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy. Geochim. Cosmochim. Acta, 43, 1417–1420.Google Scholar
Fuchtbauer, H. (1958) Die petrographische Unterscheidung der Zechsteindoloraite im Emsland durch ihren Saureriickstand. Erdol und Kohle, 11, 689–693.Google Scholar
Fuchtbauer, H. & Goldschmidt, H. (1959) DieTonmineralederZechsteinformation. Beit. Miner. Petr., 6, 320345. Russell, J.D. (1987) Infrared methods. Pp. 133-173 in: A Handbook of Determinative Methods in Clay Mineralogy (Wilson, M.J., editor). Blackie, Glasgow.Google Scholar
Smykatz-Kloos, W. (1966) Sedimentpetrographische und geochemische Unter suchungen an Karbonatgesteinen des Zechsteins Teil II. Spezieller Teil. Contr. Mineral. Petrol,, 13, 232–268.Google Scholar
Stentoft, N. (1990) Diagenesis of the Zechstein Ca-2 carbonate from the L0gumkloster-1 well Denmark. DGU SERIE B 12, 42 pp.Google Scholar
Stentoft, N., Frykman, P., Rasmussen, K.L. & Koch, C.J.W. (1991) EDTA-insoluble residues from the Zechstein Ca-2 unit (Late Permian), the L0gumkloster-1 Well, Denmark. Geologic en Mijnbouw, 70, 115–128.Google Scholar