Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T20:29:36.689Z Has data issue: false hasContentIssue false

Intercalation of tris(2,2'-bipyridine)ruthenium(II) into magadiite

Published online by Cambridge University Press:  09 July 2018

M. Ogawa
Affiliation:
PRESTO, Japan Science and Technology Corporation Institute of Earth Science, Waseda University, Nishiwaseda 1-6-1, Tokyo 169-50, Japan
N. Maeda
Affiliation:
Institute of Earth Science, Waseda University, Nishiwaseda 1-6-1, Tokyo 169-50, Japan

Abstract

Intercalation of the tris(2,2'-bipyridine)ruthenium(II) complex cation into a layered silicate (magadiite; the ideal formula for which is Na2Si14O29.nH2O) was investigated. Since the complex cation did not intercalate by a direct ion exchange reaction with the interlayer Na ions in an aqueous medium, dodecyltrimethylammonium exchanged magadiite was used as a precursor. Depending on the loading of the complex cations and the solvents employed for the reactions, two types of tris(2,2'-bipyridine)mthenium(II)-magadiite intercalation compounds formed. One has a basal spacing of ~2.9 nm due to a large amount of the dodecyltrimethylammonium ions which remained in the interlayer space of magadiite and coexisted with the intercalated tris(2,2'- bipyridine)ruthenium(II) complex cations. The other has a basal spacing of '2.0 nm because the intercalated tris(2,2'-bipyridine)ruthenium(II) complex ions form a monolayer in the interlayer space of magadiite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anpo, M. & Matsuura, T. (Editors) (1989) Photochemistry on Solid Surfaces. Studies in Surface Science and Catalysis, 47. Elsevier, Amsterdam.Google Scholar
Awaluddin, A., DeGuzman, R.N., Kumar, C.V., Suib, S.L., Burkett, S.L. & Davis, M.E. (1995) Quenching of tris(2,T-bipyridine)mthenium(II) luminescence by cobalt(II) polypyridyl complexes in different sites in and on clays. g. Phys. Chem. 99, 98869892.CrossRefGoogle Scholar
Barrer, R.M. (1978) Zeolites and Clay Minerals as Sorbents and Molecular Sieves. Academic Press, London.Google Scholar
Colón, J.L., Yang, C.-Y., Clearfield, A. & Martin, C.R. (1988) Optical investigations of the chemical microenvironment within the layered solid zirconium phosphate sulfophenylphosphate. J. Phys. Chem. 92, 57775781.Google Scholar
Dailey, J.S. & Pinnavaia, T.J. (1992) Silica pillared derivatives of H+-magadiite, a crystalline hydrated silica. Chem. Mater. 4, 855863.Google Scholar
Eugster, H.P. (1967) Hydrous sodium silicates from Lake Magadii, Kenya: precursors of bedded chert. Science, 157, 11771180.Google Scholar
Ghosh, P.K. & Bard AJ. (1984) Photochemistry of tris(2,2'-bipyridine)ruthenium(II) in colloidal clay suspension. J. Phys. Chem. 88, 55195526.Google Scholar
Jakubiak, R. & Francis, A.H. (1996) Photoinduced electron transfer processes of CdPS3 intercalated with ruthenium tris(bipyridyl) and methylviologen cations. J. Phys. Chem. 100, 362367.Google Scholar
Kalyanasundaram, K., (1992) Photochemistry of Polypyridine and Porphyrin Complexes. Academic Press, London.Google Scholar
Klafter, J. & Drake, J.M. (editors) (1989) Molecular Dynamics in Restricted Geometries. Wiley, New York.Google Scholar
Kosuge, K., Yamazaki, A., Tsunashima, A. & Otsuka, R. (1992) Hydrothermal synthesis of magadiite and kenyaite. J. Ceram. Soc. Jpn. 100, 326331 (in Japanese).Google Scholar
Kumar, C.V. & Williams, Z.J. (1995) Supramolecular assemblies of tris(2,2'-bipyridine)ruthenium(II) bound to hydrophobically modified α-zirconium phosphate: Photophysical studies. J. Phys. Chem. 99, 1763217639.Google Scholar
Kunjappu, J.T., Somasundaran, P. & Turro, N.J. (1990) Luminescence quenching study on the localization problem of Ru(bpy)3 2+ in micelles and hemimicelles. J. Phys. Chem. 94, 84648468.Google Scholar
Lagaly, G. (1979) Crystalline silicic acids and their interface reactions. Adv. Coll. Interf Sci. 11, 105148,Google Scholar
Lagaly, G., Beneke, K. & Weiss, A. (1975a) Magadiite and H-magadiite: I. Sodium magadiite and some of its derivatives. Am. Miner. 60, 642–649.Google Scholar
Lagaly, G., Beneke, K. & Weiss, A. (1975b) Magadiite and H-magadiite: II. H magadiite and its intercalation compounds. Am. Miner. 1975, 60, 650–658.Google Scholar
Landis, M.E., Aufdembrink, B.A., Chu, P., Johnson, I.D., Kirker, G.W. & Rubin, M.K. (1991) Preparation of molecular sieves from dense, layered metal oxides. J. Am. Chem. Soc. 113, 31893190.Google Scholar
Milosauljevic, B.H. & Thomas, J.K. (1984) Photochemistry of compounds adsorbed onto cellulose. Maeromolecules, 17, 22442248.Google Scholar
Müller-Warmuth, W. & Schöllhorn, R. (Editor) (1994) Progress in Intercalation Research, Kluwer Academic Publishers, Dordrecht.Google Scholar
Nakato, T., Kusunoki, K., Yoshizawa, K., Kuroda, K. & Kaneko, M. (1995) Photoluminescence of tris(2,2'- bipyridine)ruthenium(II) ions intercalated in layered niobates and titanates. J. Phys. Chem., 99, 1789617905.Google Scholar
Ogawa, M. & Kuroda, K. (1995) Photofunctions of intercalation compounds. Chem. Rev. 95, 399–438.Google Scholar
Ogawa, M., Hashizume, T., Kuroda, K. & Kato, C. (1991) Intercalation of 2,2'-bipyridine and complex formation in the interlayer space of montmorillonite by solid-solid reactions. Inorg. Chem. 30, 584–585.Google Scholar
Ogawa, M., Inagaki, M., Kodame, N., Kuroda, K. & Kato, C. (1993) Novel controlled luminescence of tris(2,2'- bipyridine)ruthenium(II) intercalated in a fluortetrasilicic mica with poly(vinylpyrrolidone). J. Phys. Chem. 97, 38193823.Google Scholar
Ramamurthy, V. (Editor) (1991) Photochemistry in Organized & Constrained Media, VCH Publishers, Inc., New York.Google Scholar
Rojo, J.M., Ruiz-Hitzky, E. & Sanz, J. (1988) Protonsodium exchange in magadiite. Spectroscopic study (NMR, IR) of the evolution of interlayer OH grouops. Inorg. Chem. 27, 27852790.Google Scholar
Ruiz-Hitzky, E. & Rojo, M. (1980) Intracrystalline grafting on layer silicic acid. Nature, 287, 28–30.Google Scholar
Ruiz-Hitzky, E., Rojo, M. & Lagaly, G. (1985) Mechanism of the grafting of organosilanes on mineral surfaces. CoIL Polym. Sci. 263, 10251030.Google Scholar
Sprung, R., Davis, M.E., Kauffman, J.S. & Dybowsky, C. (1990) Pillaring of magadiite with silicate species. Ind. Eng. Chem. Res. 29, 213220.Google Scholar
Theng, B.K.G. (1974) The Chemistry of Clay Organic Reactions. Adam Hilger, London.Google Scholar
Thomas, J.K. (1987) Characterization of surfaces by excited states. J. Phys. Chem. 91, 267276.Google Scholar
Thomas, J.K. (1988) Photophysical and photochemical processes on clay surfaces. Acc. Chem. Res. 21, 275280.Google Scholar
Thomas, J.K. (1993) Physical chemistry and radiation chemistry of molecules adsorbed on SiOz, yalumina, zeolites and clays. Chem. Rev. 93, 301320.Google Scholar
Traynor, M.F., Mortland, M.M. & Pinnavaia, T.J. (1978) Ion exchange and intersalation reactions of hectorite with tris-bipyridyl metal complexes. Clays Clay Miner. 26, 318326.Google Scholar
Wheeler, J. & Thomas, J.K. (1982) Photochemistry in porous colloidal silica particles. J. Phys. Chem. 86, 45204544.Google Scholar
Whittingham, M.S. & Jacobson, A.J. (editors) (1982) Intercalation Chemistry, Academic Press, New York.Google Scholar
Wong, S.T. & Cheng, S. (1993) Preparation and characterization of pillared magadiite. Chem. Mater. 5, 770777.Google Scholar
Yamagishi, A. (1987) Optical resolution and asymmetric syntheses by use of adsorption on clay minerals. J. Coord. Chem. 16, 131211.Google Scholar
Yanagisawa, T., Kuroda, K. & Kato, C. (1988a) Organic derivatives of layered polysilicates. I, Trimethysilylation of magadiite and kenyaite. React. Solids, 5, 167175.Google Scholar
Yanagisawa, T., Kuroda, K. & Kato, C. (1988b) Organic derivatives of layered polysilicates II. Bull. Chem. Soc. Jpn. 61, 37433745.Google Scholar
Yanagisawa, T., Yokoyama, C., Kuroda, K. & Kato, C. (1990) Synthesis of layered polysilicic acid-acrylamide intercalation compounds and polymerization in the interlayer spaces. Bull Chem. Soc. Jpn. 63, 4750.Google Scholar