Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T17:35:42.830Z Has data issue: false hasContentIssue false

Halloysite nanotubes: prospects and challenges of their use as additives and carriers – A focused review

Published online by Cambridge University Press:  02 January 2018

Pooria Pasbakhsh*
Affiliation:
School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
Rangika De Silva
Affiliation:
School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
Vahdat Vahedi
Affiliation:
School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
G. Jock Churchman
Affiliation:
School of Agriculture, Food & Wine, University of Adelaide, Adelaide, SA 5005, Australia
*

Abstract

There is increasing research interest in potential applications of halloysite as fillers for polymer composites, controlled drug delivery, carriers for the supply and sustained release of active agents for anticorrosion coatings, in nanoreactors or nanotemplates, and for the uptake of contaminants or pollutants and support for catalysts. In this review, recent findings in terms of the prospects and challenges of using halloysite nanotubes (HNTs) in different polymeric matrices targeting a range of old and new applications are discussed and evaluated. The compositions include chitosan/halloysite membranes as bone-tissue scaffolds, polylactic acid (PLA)/halloysite membranes for food-packaging applications and their antimicrobial activities, instrumented impact properties of epoxy/halloysite nanocomposites and the role of halloysite in the self-healing of epoxy composites, polyacryronitrile (PAN)/halloysite membranes for use in water filtration as well as a review of some recent applications of halloysite/alginate beads in the adsorption of contaminants such as lead.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullayev, E., Price, R., Shchukin, D. & Lvov, Y.M. (2009) Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Applied Materials & Interfaces, 1, 14371443.CrossRefGoogle ScholarPubMed
Abdullayev, E., Sakakibara, K., Okamoto, K., Wei, W., Ariga, K. & Lvov, Y.M. (2011) Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. ACS Applied Materials & Interfaces, 3, 40406.CrossRefGoogle ScholarPubMed
Abdullayev, E., Joshi, A., Wei, W., Zhao, Y. & Lvov, Y.M. (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano, 6, 72167226.10.1021/nn302328xCrossRefGoogle ScholarPubMed
Abdullayev, E., Abbasov, V., Tursunbayeva, A., Portnov, V., Ibrahimov, H., Mukhtarova, G. & Lvov, Y.M. (2013) Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. ACS Applied Materials & Interfaces, 5, 44644471.10.1021/am400936mCrossRefGoogle ScholarPubMed
Chiew, C.S.C., Yeoh, H.K., Pasbakhsh, P., Krishnaiah, K., Poh, P.E., Tey, B.T. & Chan, E.S. (2016) Halloysite/ alginate nanocomposite beads: kinetics, equilibrium and mechanism for lead adsorption. Applied Clay Science, 119, 301310.CrossRefGoogle Scholar
Churchman, G.J. (2015) The identification and nomen-clature of halloysite (a historical perspective). Pp. 5167 in: Natural Mineral Nanotubes: Properties and Applications (P. Pasbakhsh & G.J. Churchman, editors). Apple Academic Press, Ontario, Canada.10.1201/b18107-5CrossRefGoogle Scholar
De Silva, R., Pasbakhsh, P., Goh, K.-L. & Mishnaevsky, L. (2014a) 3-d computational model of poly (lactic acid)/ halloysite nanocomposites: Predicting elastic properties and stress analysis. Polymer, 55, 64186425.CrossRefGoogle Scholar
De Silva, R., Pasbakhsh, P., Goh, K., Chai, S.-P. & Chen, J. (2014b) Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. Journal of Composite Materials, 48, 37053717.10.1177/0021998313513046CrossRefGoogle Scholar
De Silva, R.T., Soheilmoghaddam, M., Goh, K.L., Wahit, M.U., Bee, S.A.H., Chai, S.-P. & Pasbakhsh, P. (2014c) Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polymer Composites, 37, 861869.CrossRefGoogle Scholar
De Silva, R.T., Pasbakhsh, P., Lee, S.M. & Kit, A.Y. (2015) ZnO deposited/encapsulated halloysite—poly (lactic acid) (pla) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Applied Clay Science, 111, 1020.CrossRefGoogle Scholar
Deng, S., Zhang, J. & Ye, L. (2009) Halloysite-epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Composites Science and Technology, 69, 24972505.10.1016/j.compscitech.2009.07.001CrossRefGoogle Scholar
Du, M., Guo, B., Liu, M. & Jia, D. (2007) Thermal decomposition and oxidation ageing behaviour of polypropylene/halloysite nanotube nanocomposites. Polymers & Polymer Composites, 15, 321328.10.1177/096739110701500408CrossRefGoogle Scholar
Govindasamy, K., Fernandopulle, C., Pasbakhsh, P. & Goh, K. (2014) Synthesis and characterisation of electrospun chitosan membranes reinforced by halloysite nanotubes. Journal of Mechanics in Medicine and Biology, 14, 1450058.10.1142/S0219519414500584CrossRefGoogle Scholar
Ismail, H., Pasbakhsh, P., Fauzi, M.N.A. & Bakar, A.A. (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polymer Testing, 27, 841850.CrossRefGoogle Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. (2005) Halloysite clay minerals — a review. Clay Minerals, 40, 383426.CrossRefGoogle Scholar
Li, G.L., Zheng, Z., Mohwald, H. & Shchukin Dmitry, G. (2013) Silica/polymer double-walled hybrid nano-tubes: synthesis and application as stimuli-responsive nanocontainers in self-healing coatings. ACS Nano, 7, 24702478.CrossRefGoogle Scholar
Liu, M., Guo, B., Du, M., Lei, Y. & Jia, D. (2007) Natural inorganic nanotubes reinforced epoxy resin nanocomposites. Journal of Polymer Research, 15, 205212.10.1007/s10965-007-9160-4CrossRefGoogle Scholar
Liu, C., Luo, Y., Jia, Z., Li, S., Guo, B. & Jia, D. (2011) Structure and properties of poly(vinyl chloride)/ halloysite nanotubes nanocomposites. Journal of Macromolecular Science, Part B, 51, 968981.CrossRefGoogle Scholar
Liu, M., Zhang, Y. & Zhou, C. (2013a) Nanocomposites of halloysite and polylactide. Applied Clay Science, 75, 5259.10.1016/j.clay.2013.02.019CrossRefGoogle Scholar
Liu, M., Wu, C., Jiao, Y., Xiong, S. & Zhou, C. (2013b) Chitosan-halloysite nanotubes nanocomposite scaf-folds for tissue engineering. Journal of Materials Chemistry B, 1, 20782089.10.1039/c3tb20084aCrossRefGoogle Scholar
Lvov, Y.M., Wencai, W., Liqun, Z. & Fakhrullin, R. (2015) Halloysite clay nanotubes for loading and sustained release of functional compounds. Advanced Materials, 28, 12271250.10.1002/adma.201502341CrossRefGoogle ScholarPubMed
Makaremi, M., De Silva, R.T. & Pasbakhsh, P. (2015) Electrospun nanofibrous membranes of polyacryloni-trile/halloysite with superior water filtration ability. The Journal of Physical Chemistry C, 119, 79497958.10.1021/acs.jpcc.5b00662CrossRefGoogle Scholar
Murariu, M., Dechief, A.-L., Paint, Y., Peeterbroeck, S., Bonnaud, L. & Dubois, P. (2012) Polylactide (pla)— halloysite nanocomposites: Production, morphology and key-properties. Journal of Polymers and the Environment, 20, 932943.CrossRefGoogle Scholar
Olugebefola, S.C., Hamilton, A.R., Fairfield, D.J., Sottos, N.R. & White, S.R. (2014) Structural reinforcement of microvascular networks using electrostatic layer-by-layer assembly with halloysite nanotubes. Soft Materials, 10, 544548.CrossRefGoogle ScholarPubMed
Pasbakhsh, P., Ismail, H., Fauzi, M.N.A. & Bakar, A.A. (2010) EPDM/modified halloysite nanocomposites. Applied Clay Science, 48, 405413.10.1016/j.clay.2010.01.015CrossRefGoogle Scholar
Pasbakhsh, P., Churchman, G.J. & Keeling, J.L. (2013) Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Applied Clay Science, 74, 4757.10.1016/j.clay.2012.06.014CrossRefGoogle Scholar
Prabhakaran, M.P., Venugopal, J. & Ramakrishna, S. (2009) Electrospun nano structured scaffolds for bone tissue engineering. Acta Biomaterialia, 5, 28842893.10.1016/j.actbio.2009.05.007CrossRefGoogle Scholar
Rasband, W.S. (1997-2015) ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/. Google Scholar
Shchukin, D.G. & Möhwald, H. (2007) Surface-engineered nanocontainers for entrapment of corrosion inhibitors. Advanced Functional Materials, 17, 14511458.CrossRefGoogle Scholar
Shchukin, D.G., Lamaka, S.V., Yasakau, K.A., Zheludkevich, M.L., Ferreira, M.G.S. & Mohwald, H. (2008) Active anticorrosion coatings with halloysite nanocontainers. The Journal of Physical Chemistry C, 112, 958964.CrossRefGoogle Scholar
Tang, Y., Deng, S., Ye, L., Yang, C., Yuan, Q., Zhang, J. & Zhao, C. (2011) Effects of unfolded and intercalated halloysites on mechanical properties of halloysite-epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 42, 345354.10.1016/j.compositesa.2010.12.003CrossRefGoogle Scholar
Vahedi, V. & Pasbakhsh, P. (2014a) Functionalization and compatiblization of halloysite nanotubes. Pp. 220252 in: Natural Mineral Nanotubes: Properties and Applications (P. Pasbakhsh & G.J. Churchman, editors). Apple Academic Press, Ontario, Canada.Google Scholar
Vahedi, V. & Pasbakhsh, P. (2014b) Instrumented impact properties and fracture behaviour of epoxy/modified halloysite nanocomposites. Polymer Testing, 39, 101114.10.1016/j.polymertesting.2014.07.017CrossRefGoogle Scholar
Vahedi, V., Pasbakhsh, P. & Chai, S.-P. (2015) Toward high performance epoxy/halloysite nanocomposites: New insights based on rheological, curing, and impact properties. Materials & Design, 68, 4253.CrossRefGoogle Scholar
Wei, W., Abdullayev, E., Hollister, A., Mills, D. & Lvov, Y.M. (2012) Clay Nanotube/Poly(methyl methacrylate) bone cement composites with sustained antibiotic release. Macromolecular Materials & Engineering, 297, 645653.10.1002/mame.201100309CrossRefGoogle Scholar
Xue, J., Niu, Y., Gong, M., Shi, R., Chen, D., Zhang, L. & Lvov, Y.M. (2015) Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano, 9, 16001612.10.1021/nn506255eCrossRefGoogle Scholar
Yah, W.O., Takahara, A. & Lvov, Y.M. (2012) Selective modification of halloysite lumen with octadecylpho-sphonic acid: New inorganic tubular micelle. Journal of the American Chemical Society, 134, 18531859.10.1021/ja210258yCrossRefGoogle ScholarPubMed
Yuan, P., Southon, P.D., Liu, Z., Green, M.E.R., Hook, J.M., Antill, S.J. & Kepert, C.J. (2008) Functionalization of halloysite clay nanotubes by grafting with γ-amino-propyltriethoxysilane. The Journal of Physical Chemistry C, 112, 1574215751.10.1021/jp805657tCrossRefGoogle Scholar
Yuan, P., Southon, P.D., Liu, Z. & Kepert, C.J. (2012) Organosilane functionalization of halloysite nano-tubes for enhanced loading and controlled release. Nanotechnology, 23, 375705.Google Scholar