Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T21:45:44.500Z Has data issue: false hasContentIssue false

Experimental study of the transformation of smectite at 80 and 300ºC in the presence of Fe oxides

Published online by Cambridge University Press:  09 July 2018

D. Guillaume*
Affiliation:
Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566 CNRS-CREGU-INPL-UHP, Université Henri Poincaré, BP 239, 54506, Vandœuvre-lès-Nancy
A. Neaman
Affiliation:
Laboratoire Environnement et Minéralurgie (LEM), UMR 7569 CNRS-INPL, Ecole Nationale Supérieure de Géologie, BP 40, 54501, Vandœuvre-lès-Nancy
M. Cathelineau
Affiliation:
Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566 CNRS-CREGU-INPL-UHP, Université Henri Poincaré, BP 239, 54506, Vandœuvre-lès-Nancy
R. Mosser-Ruck
Affiliation:
Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566 CNRS-CREGU-INPL-UHP, Université Henri Poincaré, BP 239, 54506, Vandœuvre-lès-Nancy
C. Peiffert
Affiliation:
Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566 CNRS-CREGU-INPL-UHP, Université Henri Poincaré, BP 239, 54506, Vandœuvre-lès-Nancy
M. Abdelmoula
Affiliation:
Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME), UMR 7564 CNRS-UHP, Université Henri Poincaré, 405 rue de Vandœuvre, 54600, Villers-lès-Nancy
J . Dubessy
Affiliation:
Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566 CNRS-CREGU-INPL-UHP, Université Henri Poincaré, BP 239, 54506, Vandœuvre-lès-Nancy
F. Villiéras
Affiliation:
Laboratoire Environnement et Minéralurgie (LEM), UMR 7569 CNRS-INPL, Ecole Nationale Supérieure de Géologie, BP 40, 54501, Vandœuvre-lès-Nancy
N. Michau
Affiliation:
Agence nationale pour la gestion des déchets radioactifs (ANDRA), Direction Scientifique/Service Matériaux, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry, France

Abstract

The alteration and transformation behaviour of montmorillonite (Wyoming bentonite) was studied experimentally to simulate the mineralogical and chemical reaction of clays in contact with steel in a nuclear waste repository. Batch experiments were conducted at 80 and 300ºC, in low-salinity solutions (NaCl, CaCl2) and in the presence or otherwise of magnetite and hematite, over a period of 9 months. The mineralogical and chemical evolution of the clays was studied by XRD, SEM, transmission Mössbauer spectroscopy and EDS-TEM. Experimental solutions were characterized by ICP-AES and ICP-MS. The main results are that no significant change in the crystal chemistry of the montmorillonite occurred at 80ºC, while at 300ºC, the presence of Fe oxides leads to a partial replacement of montmorillonite by high-charge trioctahedral Fe2+-rich smectite (saponite-like) together with the formation of feldspars, quartz and zeolites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alt, J., Honnorez, J., Laverne, C. & Emmerman, R. (1986) Hydrothermal alteration of a 1 m section through the upper oceanic crust. Deep Sea Drilling project Hole 504B: mineralogy, chemistry and evolution of seawater- basalt interactions. Journal of Geophysical Research, 91, 10, 309 335.Google Scholar
Benali, O., Abdelmoula, M., Refait, P. & Génin, J.M. (2001) Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite. Geochimica et Cosmochimica Acta, 65, 1715–1726 Google Scholar
Buatier, M., Honnorez, J. & Ehret, G. (1989) Fe-smectiteglauconite transition in the hydrothermal green clays from the Galapagos spreading center. Clays and Clay Minerals, 37, 532–541 CrossRefGoogle Scholar
Buatier, M.D., Ouyang, K. & Sanchez, J.P. (1993) Iron in hydrothermal clays from the Galapagos spreading centre mounds: consequences for the clay transition mechanism. Clay Minerals, 28, 641–655 Google Scholar
Buatier, M.D., Früh-Green G.L. & Karpoff, A.M. (1995) Mechanisms of Mg-phyllosilicate formation in a hydrothermal system at a sedimented ridge (Middle Valley, Juan de Fuca). Contributions to Mineralogy and Petrology, 122, 134–151 CrossRefGoogle Scholar
Byström-Brusewitz, A.M. (1975) Studies of the Li test to di stin guis h beid ell ite and montmor il loni te. Proceedings of the International Clay Conference 1972, Mexico City, Applied Publishing Ltd., Wilmette, Illinois, USA, Pp. 419428.Google Scholar
Cathelineau, M. & Izquierdo, G. (1988) Temperaturecomposition relationships of authigenic micaceous minerals in the Los Azufres geothermal system. Contributions to Mineralogy and Petrology, 100, 418–428 Google Scholar
Cathelineau, M., Oliver, R., Nieva, D. & Garfias, A. (1985) Mineralogy and distribution of hydrothermal mineral zones in Los Azufres (Mexico) geothermal field. Geothermics, 14, 49–57 CrossRefGoogle Scholar
Cathelineau, M., Mosser-Ruck, R. & Charpentier, D. (2001) Interactions fluides/argilites en conditions de stockage profond des déchets nucléaires. Intérêt du couplage expérimentation/modélisation dans la compréhension des mécanismes de transformation des argiles et la prédiction à long terme du comportement de la barrière argileuse. Pp. 305341 in: Actes des Journées Scientifiques ANDRA, Nancy, France. EDP Sciences.Google Scholar
Eberl, D.D. (1978) Reaction series for dioctahedral smectites. Clays and Clay Minerals, 26, 327–340 CrossRefGoogle Scholar
Eberl, D.D. & Hower, J. (1977) The hydrothermal transformation of Sodium and Potassium smectite into mixed-layer clay. Clays and Clay Minerals, 25, 215–227 Google Scholar
Eberl, D.D., Whitney, G. & Khoury, H. (1978) Hydrothermal reactivity of smectite. American Mineralogist, 63, 401–409 Google Scholar
Greene-Kelly R. (1953) The identification of montmorillonoids in clays. Journal of Soil Science, 4, 233–237 Google Scholar
Guillaume, D., Neaman, A., Mosser-Ruck, R., Dubessy, J., Cathelineau, M. & Villiéras, F. (2001a) Experimental study of hydrothermal reactivity of bentonite at 80 and 300°C in the presence of iron and/or iron oxides. Berichte der De ut schen Miner alog isc hen Gesellshaft, Beihefte zum European Journal of Mineralogy, 13, p. 69 p.Google Scholar
Guillaume, D., Pironon, J. & Ghanbaja, J. (2001b) Valence determination of iron in clays by electron energy loss spectroscopy. Berichte der Deutschen Miner alogi schen Gesel lshaft, Beiheft e zum European Journal of Mineralogy, 13, p. 70.Google Scholar
Guillaume, D., Neaman, A., Cathelineau, M., Mosser-Ruck, R., Peiffert, C., Abdelmoula, M., Dubessy, J., Villiéras, F., Baronnet, A. & Michau, N. (2003) Experimental synthesis of chlorite from smectite at 300°C in the presence of metallic iron. Clay Minerals, 38, 281–302 CrossRefGoogle Scholar
Hoffmann, U. & Klemen, E. (1950) Loss of exchangeability of lithium ions in bentonites on heating. Zeitschrift für Anorganisch e und Allgemeine Chemie, 262, 95–99 Google Scholar
Honnorez, J. (1981) The aging of the oceanic crust at low temperature. Pp. 525587 in: The oceanic lithosphere. The Sea, 7, (Emiliani, C., editor). Wiley Interscience Publishers, John Wiley & Sons, New York.Google Scholar
Inoue, A. (1983) Potassium fixation by clay minerals during hydrothermal treatment. Clays and Clay Minerals, 31, 81–91 CrossRefGoogle Scholar
Kang, M.K., Kim, D.Y. & Hwang, N.M. (2002) Ostwald ripening kinetics of angular grains dispersed in a liquid phase by two dimensional nucleation and abnormal grain growth. Journal of the European Ceramic Society, 22, 603–612 CrossRefGoogle Scholar
Kastner, M. (1981) Authigenic silicates in deep sea sediments: formation and diagenesis. Pp. 915980 in: The oceanic lithosphere. The Sea, 7, (Emiliani, C., editor). Wiley Interscience Publishers, John Wiley & Sons, New York.Google Scholar
Madsen, F.T. (1998) Clay mineralogical investigations related to nuclear waste disposal. Clay Minerals, 33, 109–129 Google Scholar
Müller-Vonmoos, M., Kahr, G., Bucher, F., Madsen, F.T. & Mayor, P.A. (1991) Untersuchungen zum Verhalten von Bentonit in kontakt mit Magnetit und Eisen unter Endlagerbedingungen. NTB 91–14. Nagra, Hardstras se 73, CH-5430 Wettingen, Switzerland.Google Scholar
Murad, E. (1998) Clays and clay minerals: What can Mössbauer spectroscopy do to help understand them. Hyperfine Interactions, 117, 39–70 Google Scholar
Schiffman, P. & Fridleifsson, G.O. (1991) The smectitechlorite transition in drillhole Nj-15, Nesjavellir geothermal field, Iceland: XRD, BSE, and Electron Microprobe Investigations. Journal of Metamorphic Geology, 9, 679–696 Google Scholar
Yamada, H., Yoshioka, K., Tamura, K., Fujii, K. & Nakazawa, H. (1998) Reaction sequences of sodium montmorillonite under hydrothermal conditions. Clay Science, 10, 385–394 Google Scholar