Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T02:43:56.287Z Has data issue: false hasContentIssue false

Clay minerals associations in palaeoweathering profiles from Central Spain: genesis and implications

Published online by Cambridge University Press:  09 July 2018

M. Doval
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
R. Martín-García*
Affiliation:
Departamento de Petrología y Geoquímica, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain Instituto de Geociencias (IGEO) CSIC – UCM, Facultad de Ciencias Geológicas, 28040 Madrid, Spain
Á. La Iglesia
Affiliation:
Instituto de Geociencias (IGEO) CSIC – UCM, Facultad de Ciencias Geológicas, 28040 Madrid, Spain
A. M. Alonso-Zarza
Affiliation:
Departamento de Petrología y Geoquímica, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain Instituto de Geociencias (IGEO) CSIC – UCM, Facultad de Ciencias Geológicas, 28040 Madrid, Spain
*

Abstract

This study examines part of the thick palaeoweathering mantle that formed on the northern area of the Spanish Central System. The study of a compound profile indicates that despite weathering processes, the primary structure of the metamorphic rocks is preserved, and is only partially lost in some intervals of the upper part of the compound profile. Macro/micromorphology, mineralogy and geochemical changes within the profiles revealed two weathering paths. In the first path, Fe-chlorite weathered to chlorite-smectite mixed-layer/smectite/kaolinite+ iron oxides. In the second path, biotite and/or muscovite weathered to kaolinite + iron oxides. The profiles show a progressive decrease, from base to top, in mica and mixed-layers and an increase in smectite and kaolinite. Thus, the profiles only comprise the lower or intermediate zones of the weathering mantle. The weathering occurred under humid climates; the lower zones of the profiles were poorly drained, whereas the topmost zones were better drained and more oxidizing. The results obtained indicate that detailed mineralogical studies are very useful to reconstruct the characteristics of the weathering mantles, and as palaeogeographic and palaeoclimatic indicators.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased

References

Begonhaa, A. & Sequeira Braga, M.A. (2002) Weathering of the Oporto granite: geotechnical and physical properties. Catena, 49, 57–76.CrossRefGoogle Scholar
Blanco, J.A., Corrochano, A., Montigny, R. & Thuizat, R. (1982) Sur l’âge du debut de la sédimentation dans le bassin tertiaire du Duero (Espagne). Attribution au Palaéogéne par datation isotopique des alunites de l’Unité Inferieure. Comptes Rendues de l’Académie des Sciences, Paris, 295, 259–262.Google Scholar
Bouchard, M. & Jolicoeur, S. (2000) Chemical weathering studies in relation to geomorphological research in southeastern Canada. Geomorphology, 32, 213–238.Google Scholar
Brindley, G.W. (1961) Experimental methods. Pp. 1–50 in: The X-ray Identification and Crystal Structures of Clay Minerals (Brown, G., editor). Mineralogical Society, London.Google Scholar
Bronger, A. (2007) Time dependence of the rate and direction of mineral weathering and clay mineral formation with special consideration to kaolinites. Revista Mexicana de Ciencias Geolögicas, 24, 510–523.Google Scholar
Chung, F.H. (1975) Quantitative interpretation of X-ray diffraction patterns of mixtures. III. Simultaneous determination of a set of reference intensities. Journal of Applied Crystallography, 8, 17–19.Google Scholar
Dammer, D. (1995) Geochronology of Chemical Weathering Processes in the Northern and Western Australia Regolith. PhD thesis, Australian National University, Canberra, Australia, 214 pp.Google Scholar
Deepthy, T. & Balakrishnan, S. (2005) Climatic control on clay mineral formation: Evidence from weathering profiles developed on either side of the Western Ghats. Journal of Earth System Science, 114, 545–556.Google Scholar
Fernández-Caliani, J.C. & Cantano, M. (2009) Intensive kaolinitization during a lateritic weathering event in South-West Spain: Mineralogical and geochemical inferences from a relict paleosol. Catena, 80, 23–33.Google Scholar
Fernández Carrasco, J., Olivé Davö, A., Carreras Suárez, F., Hernández, Samaniego A., Aguilar Tomás, M.J. & Capote Villar, C. (1982) Hoja geolögica num. 505 (Miruenã de los Infantes). Mapa Geolögico de Espanã. E. 1: 50.000, Segunda serie, I.G.M.E., Madrid.Google Scholar
Galán, E. (2006) Genesis of clay minerals. Pp. 1129–1162 in: Handbook of Clay Science (Bergaya, E., Theng, B. & Lagaly, G., editors). Elsevier, Amsterdam.Google Scholar
Gömez-Gras, D. & Ferrer, C. (1999) Caracterizaciön petrolögica de perfiles de meteorizaciön antiguos desarrollados en granitos tardihercínicos de la Cordillera Costero Catalana. Revista de la Sociedad Geolögica de Espan˜a, 12, 281–299.Google Scholar
Herrington, R., Boni, M., Skarpelis, N. & Large, D. (2007) Palaeoclimate, weathering and ore deposits – a European perspective. Proceedings of the Ninth Biennial SGA Meeting, Dublin. Pp. 1373–1376 in: Digging Deeper (C.J. Andrew et al., editors).Google Scholar
Jolicoeur, S. Ildefonse, P. & Bouchard, M. (2000) Kaolinite and gibbsite weathering of biotite within saprolites and soils of Central Virginia. Soil Science Society of America Journal, 64, 1118–1129.Google Scholar
Le, T.H. & Ferrell, R. (1996) MULCALC. Department of Geology and Geophysics E235 Howe/Russell Geoscience Complex, Baton Rouge, LA 70803, USA.Google Scholar
Migoń, P. & Lidmar-Bergström, K. (2001) Weathering mantles and their significance for geomorphological evolution of central and northern Europe since the Mesozoic. Earth-Science Reviews, 56, 285–324.Google Scholar
Molina, E.M. (2004) El papel de las alteraciones en Geomorfología: el caso de los piedemontes de relieves residuales en el zöcalo Hercínico Ibérico. Pp 106–115 in: Miscelanea en homenaje a Emiliano Aguirre (E. Baquedano & S. Rubio, editors). Museo Arqueolögico Regional, Alcalá de Henares, Madrid.Google Scholar
Molina, E. & Cantano, M. (2002) Study of weathering processes developed on old piedmont surfaces in Western Spain: new contributions to the interpretation of the “Ranã” profiles. Geomorphology, 42, 279–292.Google Scholar
Molina, E., Cantano, M., Vicente, M.A. & García Rodríguez, P. (1990) Some aspects of paleoweathering in the Iberian Hercynian Massif. Catena, 17, 333–346.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. Jr. (1997) Identification of clay minerals and associated minerals. Pp. 227–260 in: X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York.Google Scholar
Reynolds, R.C. Jr. & Reynolds, R.C. III (1996) NEWMOD: the calculation of one dimensional Xray diffraction patterns of mixed-layered clay minerals. Computer program. R.C. Reynolds Jr., Brook Rd., Hanover 03755, New Hampshire, USA.Google Scholar
Taboada, T. & García, C. (1999) Smectite formation produced by weathering in a coarse granite saprolite in Galicia (NW Spain). Catena, 35, 281–290.Google Scholar
Tardy, Y. (1997) Petrology of Laterites and Tropical Soils. A.A. Balkema Publishers. Rotterdam.Google Scholar
Thiry, M., Schmitt, J.-M. & Simon-Coinçon, R. (1999) Problems, progress and future research concerning palaeoweathering and palaeosurfaces. Pp. 3–17 in: Palaeoweathering, Paleaosurfaces and Related Continental Deposits (M. Thiry & R. Simon-Coinçon, editors). IAS Special Publication, 27.Google Scholar
Twidale, C.R. (2002) The two stage concept of landform and landscape development involving etching: origin, development and implications of an idea. Earth-Science Reviews, 57, 37–74.Google Scholar
Valladares, M.I., Ugidos, J.M., Barba, P. & Colmenero, J.R. (2002) Contrasting geochemical features of the Central Iberian Zone shales (Iberian Massif, Spain): implications for the evolution of Neoproterozoic- Lower Cambrian sediments and their sources in other peri-Gondwanan areas. Tectonophysics, 352, 121–13.Google Scholar
Vasconcelos, P.M., Renne, P.R., Brimhall, G.H. & Becker, T.A. (1994) Direct dating of weathering phenomena by 40Ar/39Ar and K-Ar analysis of supergene K-Mn oxides. Geochimica et Cosmochimica Acta, 58, 1635–1665.Google Scholar
Velde, B. (1973) Phase equilibria for dioctahedral expandable phases in sediments and sedimentary rocks. Pp 235–248 in: Proceedings International Clay Conference 1972 (Serratosa, J.M., editor), CSIC, Madrid.Google Scholar
Vicente, M.A., Molina, E. & Espejo, R. (1991) Clays in paleoweathering processes: study of a typical weathering profile in the Hercynian basement in the Montes de Toledo (Spain). Clay Minerals, 26, 81–90.CrossRefGoogle Scholar
Vicente, M.A., Elsass, F., Molina, E. & Robert, M. (1997) Paleoweathering in slates from the Iberian Hercynian Massif (Spain): investigation by TEM of clay mineral signatures. Clay Minerals, 32, 435–451.Google Scholar
Wilson, M.J. (1999) The origin and formation of clay minerals in soils; past, present and future perspectives. Clay Minerals, 34, 7–25.Google Scholar
Wilson, M.J. (2004) Weathering of the primary rockforming minerals: processes, products and rates. Clay Minerals, 39, 233–266.CrossRefGoogle Scholar