Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T03:37:50.276Z Has data issue: false hasContentIssue false

Characterization, pillaring and catalytic properties of a saponite from Vicálvaro, Madrid, Spain

Published online by Cambridge University Press:  09 July 2018

B. Casal
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049-Madrid, Spain
J. Merino
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049-Madrid, Spain
E. Ruiz-Hitzky
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049-Madrid, Spain
E. Gutierrez
Affiliation:
R & D Department, TOLSA, S.A., c/Nuñez de Balboa, 51, 28001-Madrid, Spain
A. Alvarez
Affiliation:
R & D Department, TOLSA, S.A., c/Nuñez de Balboa, 51, 28001-Madrid, Spain

Abstract

The characterization, pillaring ability and some catalytic properties of a saponite from the Vicálvaro deposit of Tolsa, located in Madrid have been studied. This mineral is associated with sepiolite in the same lacustrine environment. The raw saponite presents, as special characteristics, high specific surface area (>200 m2/g) and a high percentage of tetrahedral Al (90% of the total Al in the sample). Natural saponite gives rise to high conversions when used as a catalyst in the reaction of alkylation of benzene with 1-dodecene. Increased catalytic performances are obtained over the alumina-pillared saponite derivatives. These materials have also been tested in the cracking of gas-oil (microactivity test), giving good conversions and high selectivity towards the gasoline fraction, especially the pillared forms.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlrichs, J.L., Serna, J.C. & Serratosa, J.M. (1975) Structural hydroxyls in sepiolites. Clays Clay Miner. 23, 119124.Google Scholar
Alvarez, A., Velasco, J. & Lopez, J.L. (1991) Semiquantitative analysis of sepiolite and its associated minerals by X-ray diffraction. Proc. 7th Euroclay Conf., Dresden 1, 3536.Google Scholar
Aznar, A.J., Casal, B., Ruiz-Hitzky, E., Lopez-Arbeloa, I., Lopez-Arbeloa, F., Santaren, J. & Alvarez, A. (1992) Adsorption of methylene blue on sepiolite gels: Spectroscopic and rheological studies. Clay Miner. 27, 101108.Google Scholar
Bergmann, K. & O'Konski, C.T. (1963) A spectroscopic study of methylene blue monomer, dimer and complexes with montmorillonite. J. Phys. Chem. 67, 21692177.Google Scholar
Cenens, J. & Schoonheydt, R.A. (1988) Visible spectroscopy of methylene blue on hectorite, Laponite B and barasym in aqueous suspension. Clays Clay Miner 36, 214224.CrossRefGoogle Scholar
Chevalier, S., Franck, R., Lambert, J.F., Barthomeuf, D. & Suquet, H. (1994) Characterization of the porous structure and cracking activity of Al-pillared saponites. Appl. Catal. A: Gen. 110, 153165.CrossRefGoogle Scholar
Doval, M. (1992) Bentonitas. Pp. 45-69 in: Recursos Minerales de Espuna (García Guinea, J. & Martínez Frias, J., editors), Colección Textos Universitarios n°15 Consejo Superior de Investigaciones Cientfficas, Madrid, Spain.Google Scholar
Galán, E. & Castillo, A. (1984) Sepiolite-palygorskite in Spanish Tertiary basins: Genetical patterns in continental environments. Pp. 87–124 in: Palygorskite and Sepiolite. Ocurrences, Genesis and Uses. (Singer, A. & Galán, E., editors). Developments in Sedimentology, Elsevier Sci. Pub., Amsterdam.Google Scholar
Galán, E., Alvarez, A. & Esteban, M.A. (1986) Characterization and technical propierties of a Mgrich bentonite. Appl. Clay Sci. 1, 295309.CrossRefGoogle Scholar
Giles, C.H., McEvan, T.H., Nakhma, S.N. & Smith, D. (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurements of specific surface areas of solids. J. Chem. Soc., 3973-3993.Google Scholar
Hay, R.L., Guldman, S.G., Matthews, J.C., Lander, R.H., Duffin, M.E. & Kyser, T.K. (1991) Clay diagenesis in Core KM-3 of Searles lake, California. Clays Clay Miner. 39, 8496.Google Scholar
Horvath, G. & Kawazoe, K. (1983) Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Japan, 16, 470475.Google Scholar
Jacobs, P., Poncelet, G. & Schutz, A. a) French Patent Appl. n° 8116387 (1981). b) Europe Patent 73,718 (1983).Google Scholar
Leguey, S., Pozo, M. & Medina, J.A. (1985) Polygenesis of sepiolite and palygorskite in a fluvio-lacustrine environment in the Neogene Basin of Madrid. Min. Petrogr. Acta, 29-A, 287-301.Google Scholar
Leguey, S., Martin Rubi, J.A., Casas, J., Marta, J., Cuevas, J., Alvarez, A. & Medina, J.A. (1994) Diagenetic evolution and mineral fabric in sepiolitic materials from the Vicilvaro Deposit (Madrid, Spain). Proc. Int. Clay Conf., Adelaide, 383-392.Google Scholar
Margulies, L., Rytwo, G., Serban, C. & Nir, S. (1991) Use of methylene blue and crystal violet for determination of exchangeable cations in montmorillonite. Clays Clay Miner. 39, 551555.Google Scholar
Müller, D., Gessner, W., Behrens, H. & Scheler, G. (1981) Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high resolution 27Al NMR. Chem. Phys. Lett. 79, 5962.Google Scholar
Parry, E.P. (1963) An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J. Catal. 2, 371379.Google Scholar
Pinnavaia, T.J., Tzou Ming-Shin, Landau, S.D.L. & Raythatha, R.H. (1984) On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminium. J. Mol. Catal. 27, 195212.Google Scholar
Plee, D., Gatineau, L. & Fripiat, J.J. (1987) Pillaring processes of smectites with and without tetrahedral substitution. Clays Clay Miner. 35, 8188.Google Scholar
Ramirez, S., Garralon, A., Cuevas, J., Martin Rubi, J.A., Casa, J., Alvarez, A. & Leguey, S. (1995) Características químicas y propiedades de superficie en secuencias-tipo de materiales esmectíticos en el yacimiento de sepiolita de Vicálvaro (Madrid). Proc. 6° Congreso Geoquímica, Soria, Spain. Google Scholar
Santaren, J., Sanz, J. & Ruiz-Hitzky, E. (1990) Structural fluorine in sepiolite. Clays Clay Miner. 38, 63–68.CrossRefGoogle Scholar
Sanz, J. (1990) Distribution of ions in phyllosilicates by NMR spectroscopy. Ch. 4 in: Adsorption Spectroscopy in Minerals. Elsevier, Amsterdam.Google Scholar
Sanz, J. & Serratosa, J.M. (1984) 29Si and 27Al High- Resolution MAS-NMR spectra of phyllosilicates. J. Am. Chem. Soc. 106, 47904793.Google Scholar
Serna, J.C., Ahlrichs, J.L. & Serratosa, J.M. (1975) Folding in sepiolite crystals. Clays Clay Miner. 23, 452457.Google Scholar
Vaughan, D.E.W. & Lussier, R.J. (1980) Preparation of molecular sieves based on pillared interlayered clays (PILC). Prac. 5th Int. Conf. Zeolite & Naples, 90-101.Google Scholar
Vaughan, D.E.W., Lussier, R.J. & Magee, J.S. (1981) Stabilized pillared clays. U.S. Pat. 4,248,739. Google Scholar