Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T18:25:05.785Z Has data issue: false hasContentIssue false

Pulmonary vasodilator therapy and early postoperative outcome after modified Fontan operation

Published online by Cambridge University Press:  16 September 2014

Alberto Mendoza*
Affiliation:
Pediatric Heart Institute, Hospital Universitario 12 de Octubre, Madrid, Spain
Leticia Albert
Affiliation:
Pediatric Heart Institute, Hospital Universitario 12 de Octubre, Madrid, Spain
Sylvia Belda
Affiliation:
Pediatric Intensive Care Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
Lidia Casanueva
Affiliation:
Pediatric Intensive Care Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
Dolores Herrera
Affiliation:
Pediatric Heart Institute, Hospital Universitario 12 de Octubre, Madrid, Spain
Miguel A. Granados
Affiliation:
Pediatric Heart Institute, Hospital Universitario 12 de Octubre, Madrid, Spain
José M. Velasco
Affiliation:
Pediatric Heart Institute, Hospital Universitario 12 de Octubre, Madrid, Spain
Enrique García
Affiliation:
Pediatric Heart Institute, Hospital Universitario 12 de Octubre, Madrid, Spain
Juan M. Aguilar
Affiliation:
Pediatric Heart Institute, Hospital Universitario 12 de Octubre, Madrid, Spain
Juan V. Comas
Affiliation:
Pediatric Heart Institute, Hospital Universitario 12 de Octubre, Madrid, Spain
*
Correspondence to: A. Mendoza, Instituto Pediátrico del Corazón, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/nº, 28041, Madrid, Spain. Tel: +34913908508/+34913908347; Fax: +3491 390 87 72; E-mail: [email protected]

Abstract

Although mortality is low after the modified Fontan procedure, there is a significant percentage of patients with prolonged postoperative recovery. The objective of this study is to evaluate the usefulness of postoperative administration of oral sildenafil and inhaled nitric oxide on early postoperative outcome.

A prospective interventional and comparison study with a historical cohort was conducted. Between January, 2010 and March, 2013, 16 patients received oral sildenafil during immediate modified Fontan postoperative period. Inhaled nitric oxide was also administered if the patient was kept intubated 12 hours after surgery. Early postoperative outcome was compared with a historical cohort of 32 patients on whom the modified Fontan procedure was performed between March, 2000 and December, 2009.

Postoperative administration of sildenafil and nitric oxide had no influence on early postoperative outcome after the modified Fontan procedure in terms of duration of pleural effusions, mechanical ventilation time, length of stay in the ICU, and length of hospital stay.

Type
Original Articles
Copyright
© Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fontan, F, Baudet, E. Surgical repair of tricuspid atresia. Thorax 1971; 26: 240248.Google Scholar
2. Hirsch, JC, Goldberg, C, Bove, EL, et al. Fontan operation in the current era. A 15-year single institution experience. Ann Surg 2008; 248: 402410.CrossRefGoogle Scholar
3. Rogers, LS, Glatz, AC, Ravishankar, C, et al. 18 years of the Fontan operation at a single institution. Results from 771 consecutive patients. J Am Coll Cardiol 2012; 60: 10181025.Google Scholar
4. Khairy, P, Fernandes, SM, Mayer, JE, et al. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 2008; 117: 8592.Google Scholar
5. Salvin, JW, Scheurer, MA, Laussen, PC, et al. Factors associated with prolonged recovery after the Fontan operation. Circulation 2008; 118 (Suppl 1): S171S176.Google Scholar
6. Knott-Craig, CJ, Danielson, GK, Schaff, HV, Puga, FJ, Weaver, AL, Driscoll, DD. The modified Fontan operation. An analysis of risk factors for early postoperative death or takedown in 702 consecutive patients from one institution. J Thorac Cardiovasc Surg 1995; 109: 12371243.Google Scholar
7. Gentles, TL, Mayer, JE, Gauvreau, K, et al. Fontan operation in five hundred consecutive patients: factors influencing early and late outcome. J Thorac Cardiovasc Surg 1997; 114: 376391.Google Scholar
8. Beghetti, M. Fontan and the pulmonary circulation: a potential role for new pulmonary hypertension therapies. Heart 2010; 96: 911916.CrossRefGoogle ScholarPubMed
9. Harada, Y, Uchita, S, Sakamoto, T, et al. Do we need fenestration when performing two-staged total cavopulmonary connection using an extracardiac conduit? Interact Cardiovasc Thorac Surg 2009; 9: 5055.Google Scholar
10. Beghetti, M, Tissot, C. Hipertensión pulmonar en los cortocircuitos congénitos. Rev Esp Cardiol 2010; 63: 11791193.CrossRefGoogle Scholar
11. Mendoza, A, Albert, L, Ruiz, E, et al. Operación de Fontan. Estudio de los factores hemodinámicos asociados a la evolución postoperatoria. Rev Esp Cardiol 2012; 65: 356362.CrossRefGoogle Scholar
12. Sundareswaran, KS, Pekkan, K, Dasi, LP, et al. The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise. Am J Physiol Heart Circ Physiol 2008; 295: H2427H2435.Google Scholar
13. Dasi, LP, KrishnankuttyRema, R, Kitajima, HD, et al. Fontan hemodynamics: importance of pulmonary artery diameter. J Thorac Cardiovasc Surg 2009; 137: 560564.Google Scholar
14. Gewillig, M, Brown, SC, Eyskens, B, et al. The Fontan circulation: who controls cardiac output? Interact CardioVasc Thorac Surg 2010; 10: 428433.CrossRefGoogle ScholarPubMed
15. Bove, EL, de Leval, MR, Migliavacca, F, Guadagni, G, Dubini, G. Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 2003; 126: 10401047.Google Scholar
16. Itatani, K, Miyaji, K, Tomoyasu, T, et al. Optimal conduit size of the extracardiac Fontan operation based on energy loss and flow stagnation. Ann Thorac Surg 2009; 88: 565573.Google Scholar
17. Stewart, RD, Pasquali, SK, Jacobs, JP, et al. Contemporary Fontan operation: association between early outcome and type of cavopulmonary connection. Ann Thorac Surg 2012; 93: 12541261.Google Scholar
18. Itatani, K, Miyaji, K, Nakahata, Y, Ohara, K, Takamoto, S, Ishii, M. The lower limit of the pulmonary artery index for the extracardiac Fontan circulation. J Thorac Cardiovasc Surg 2011; 142: 127135.Google Scholar
19. Mitchell, MB, Campbell, DN, Ivy, D, et al. Evidence of pulmonary vascular disease after heart transplantation for Fontan circulation failure. J Thorac Cardiovasc Surg 2004; 128: 693702.Google Scholar
20. Yamaki, S, Ajiki, H, Haneda, K, Takanashi, Y, Ban, T, Takahashi, T. Pulmonary arterial changes in patients dying after a modified Fontan procedure following pulmonary artery banding. Heart Vessels 1994; 9: 263268.Google Scholar
21. Lévy, M, Danel, C, Tamisier, D, Vouhé, P, Leca, F. Histomorphometric analysis of pulmonary vessels in single ventricle for better selection of patients for the Fontan operation. J Thorac Cardiovasc Surg 2002; 123: 263270.Google Scholar
22. Törnberg, DC, Angdin, M, Settergen, G, Liska, J, Lundberg, JO, Weitzberg, E. Exhaled nitric oxide before and after cardiac surgery with cardiopulmonary bypass-response to acetylcholine and nitroglycerin. Br J Anaesth 2005; 94: 174180.Google Scholar
23. Lévy, M, Danel, C, Laval, AM, Leca, F, Vouhé, P, Israël-Biet, D. Nitric oxide synthase expression by pulmonary arteries: a predictive marker of Fontan procedure outcome? J Thorac Cardiovasc Surg 2003; 125: 10831090.Google Scholar
24. Hiramatsu, T, Imai, Y, Takanashi, Y, et al. Time course of endothelin-1 and adrenomedullin after the Fontan procedure. Ann Thorac Surg 1999; 68: 169172.Google Scholar
25. Journois, D, Baufreton, C, Mauriat, P, Pouard, P, Vouhé, P, Safran, D. Effects of inhaled nitric oxide administration on early postoperative mortality in patients operated for correction of atrioventricular canal defects. Chest 2005; 128: 35373544.Google Scholar
26. Barst, RJ, Ivy, D, Gaitan, G, et al. A randomized, double-blind, placebo-controlled, dose-ranging study of oral sildenafil citrate in treatment-naïve children with pulmonary arterial hypertension. Circulation 2012; 125: 324334.Google Scholar
27. Gamillscheg, A, Zobel, G, Urlesberger, B, et al. Inhaled nitric oxide in patients with critical pulmonary perfusion after Fontan-type procedures and bidirectional Glenn anastomosis. J Thorac Cardiovasc Surg. 1997; 113: 435442.CrossRefGoogle ScholarPubMed
28. Goldman, AP, Delius, R, Deanfield, JE, et al. Pharmacological control of pulmonary blood flow with inhaled nitric oxide after the fenestrated Fontan operation. Circulation 1996; 94 (Suppl II): II44II48.Google Scholar
29. Khambadkone, S, Li, J, de Leval, MR, Cullen, S, Deanfield, JE, Redington, AN. Basal pulmonary vascular resistance and nitric oxide responsiveness late after Fontan-type operation. Circulation 2003; 107: 32043208.Google Scholar
30. Yoshimura, N, Yamaguchi, M, Oka, S, et al. Inhaled nitric oxide therapy after Fontan-type operations. Surg Today 2005; 35: 3135.CrossRefGoogle ScholarPubMed
31. Cai, J, Su, J, Shi, Z, et al. Nitric oxide and milrinone: combined effect on pulmonary circulation after Fontan-type procedure: a prospective, randomized study. Ann Thorac Surg 2008; 86: 882888.Google Scholar
32. Uhm, JY, Jhang, WK, Park, JJ, Seo, DM, Yun, SC, Yung, TJ. Postoperative use of oral sildenafil in pediatric patients with congenital heart disease. Pediatr Cardiol 2010; 31: 515520.Google Scholar
33. Morchi, GS, Ivy, DD, Duster, MC, Claussen, L, Chan, KC, Kay, J. Sildenafil increases systemic saturation and reduces pulmonary artery pressure in patients with failing Fontan physiology. Congenit Heart Dis 2009; 4: 107111.Google Scholar
34. Haseyama, K, Satomi, G, Yasukochi, S, Matsui, H, Harada, Y, Uchita, Y. Pulmonary vasodilation therapy with sildenafil citrate in a patient with plastic bronchitis after the Fontan procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 2006; 132: 12321233.Google Scholar
35. Uzun, O, Wong, JK, Bhole, V, Stumper, O. Resolution of protein-losing enteropathy and normalization of mesenteric doppler flow with sildenafil after Fontan. Ann Thorac Surg 2006; 82: e39e40.Google Scholar
36. Goldberg, DJ, French, B, McBride, MG, Marino, BS, Mirarchi, N, Hanna, BD. Impact of oral sildenafil on exercise performance in children and young adults after the Fontan operation. A randomized, double-blind, placebo-controlled, crossover trial. Circulation 2011; 123: 11851193.Google Scholar
37. Giardini, A, Balducci, A, Specchia, S, Gargiulo, G, Bonvicini, M, Picchio, FM. Effect of sildenafil on haemodynamic response to exercise and exercise capacity in Fontan patients. Eur Heart J 2008; 29: 16811687.Google Scholar
38. Jackson, KW, Butts, RJ, Svenson, AJ, McQuinn, TC, Atz, AM. Response to a single dose of sildenafil in single-ventricle patients: an echocardiographic evaluation. Pediatr Cardiol 2013; 34: 17391742.Google Scholar
39. Glatz, AC, Rome, JJ, Small, AJ, et al. Systemic-to-pulmonary collateral flow, as measured by cardiac magnetic resonance imaging, is associated with acute post-Fontan clinical outcomes. Circ Cardiovasc Imaging 2012; 5: 218225.CrossRefGoogle ScholarPubMed