Published online by Cambridge University Press: 20 November 2018
This note gives a simple cocycle-theoretic proof of the Verdier hypercovering theorem. This theorem approximates morphisms $[X,\,Y]$ in the homotopy category of simplicial sheaves or presheaves by simplicial homotopy classes of maps, in the case where $Y$ is locally fibrant. The statement proved in this paper is a generalization of the standard Verdier hypercovering result in that it is pointed (in a very broad sense) and there is no requirement for the source object $X$ to be locally fibrant.