Published online by Cambridge University Press: 03 May 2019
We construct a family of self-affine tiles in $\mathbb{R}^{d}$ ($d\geqslant 2$) with noncollinear digit sets, which naturally generalizes a class studied originally by Q.-R. Deng and K.-S. Lau in $\mathbb{R}^{2}$, and its extension to $\mathbb{R}^{3}$ by the authors. We obtain necessary and sufficient conditions for the tiles to be connected and for their interiors to be contractible.
Author G. T. D. was supported by the Fundamental Research Funds for the Central Universities CCNU19TS071. Author C. T. L. was supported in part by the National Natural Science Foundation of China grant 11601403, China Scholarship Council and Research and Innovation Initiatives of WHPU 2018Y18. Author S. M. N. was supported in part by the National Natural Science Foundation of China grants 11771136 and 11271122, the Hunan Province Hundred Talents Program, Construct Program of the Key Discipline in Hunan Province, and a Faculty Research Scholarly Pursuit Funding from Georgia Southern University.